mirror of
https://github.com/gdsports/USBHost_t36
synced 2024-11-21 08:35:03 -05:00
4e2ea2d96e
instead of having each HUB have 7 buffers, which can eat up space. We have each main object contribute currently one string buffer, which than when we initialize a Device_t we try to allocate one for it, likewise we release it when the Device is released. Hopefully less memory needed. Also updated such that the HIDInput classes can not retrieve these strings. Changed test program to now also have list of HIDInput objects and when I detect a new one, I again print out info on it...
597 lines
18 KiB
C++
597 lines
18 KiB
C++
/* USB EHCI Host for Teensy 3.6
|
|
* Copyright 2017 Paul Stoffregen (paul@pjrc.com)
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the
|
|
* "Software"), to deal in the Software without restriction, including
|
|
* without limitation the rights to use, copy, modify, merge, publish,
|
|
* distribute, sublicense, and/or sell copies of the Software, and to
|
|
* permit persons to whom the Software is furnished to do so, subject to
|
|
* the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included
|
|
* in all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
|
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
|
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
|
|
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
|
|
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
|
|
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include <Arduino.h>
|
|
#include "USBHost_t36.h" // Read this header first for key info
|
|
|
|
|
|
// This HID driver claims a USB interface and parses its incoming
|
|
// data (reports). It doesn't actually use the data, but it allows
|
|
// drivers which inherit the USBHIDInput base class to claim the
|
|
// top level collections within the reports. Those drivers get
|
|
// callbacks with the arriving data full decoded to data/usage
|
|
// pairs.
|
|
|
|
#define print USBHost::print_
|
|
#define println USBHost::println_
|
|
|
|
void USBHIDParser::init()
|
|
{
|
|
contribute_Pipes(mypipes, sizeof(mypipes)/sizeof(Pipe_t));
|
|
contribute_Transfers(mytransfers, sizeof(mytransfers)/sizeof(Transfer_t));
|
|
contribute_String_Buffers(mystring_bufs, sizeof(mystring_bufs)/sizeof(strbuf_t));
|
|
driver_ready_for_device(this);
|
|
}
|
|
|
|
bool USBHIDParser::claim(Device_t *dev, int type, const uint8_t *descriptors, uint32_t len)
|
|
{
|
|
println("HIDParser claim this=", (uint32_t)this, HEX);
|
|
|
|
// only claim at interface level
|
|
if (type != 1) return false;
|
|
if (len < 9+9+7) return false;
|
|
|
|
// interface descriptor
|
|
uint32_t numendpoint = descriptors[4];
|
|
if (numendpoint < 1 || numendpoint > 2) return false;
|
|
if (descriptors[5] != 3) return false; // bInterfaceClass, 3 = HID
|
|
println(" bInterfaceClass = ", descriptors[5]);
|
|
println(" bInterfaceSubClass = ", descriptors[6]);
|
|
println(" bInterfaceProtocol = ", descriptors[7]);
|
|
// do not claim boot protocol keyboards
|
|
if (descriptors[6] == 1 && descriptors[7] == 1) return false;
|
|
|
|
print("HID Parser Claim: ");
|
|
print_hexbytes(descriptors, len);
|
|
|
|
|
|
// hid interface descriptor
|
|
uint32_t hidlen = descriptors[9];
|
|
if (hidlen < 9) return false;
|
|
if (descriptors[10] != 33) return false; // descriptor type, 33=HID
|
|
if (descriptors[14] < 1) return false; // must be at least 1 extra descriptor
|
|
if (hidlen != (uint32_t)(6 + descriptors[14] * 3)) return false; // must be correct size
|
|
if (9 + hidlen > len) return false;
|
|
uint32_t i=0;
|
|
while (1) {
|
|
if (descriptors[15 + i * 3] == 34) { // found HID report descriptor
|
|
descsize = descriptors[16 + i * 3] | (descriptors[17 + i * 3] << 8);
|
|
println("report descriptor size = ", descsize);
|
|
break;
|
|
}
|
|
i++;
|
|
if (i >= descriptors[14]) return false;
|
|
}
|
|
if (descsize > sizeof(descriptor)) return false; // can't fit the report descriptor
|
|
|
|
// endpoint descriptor(s)
|
|
uint32_t offset = 9 + hidlen;
|
|
if (len < offset + numendpoint * 7) return false; // not enough data
|
|
if (numendpoint == 1) {
|
|
println("Single endpoint HID:");
|
|
if (descriptors[offset] != 7) return false;
|
|
if (descriptors[offset+1] != 5) return false; // endpoint descriptor
|
|
if (descriptors[offset+3] != 3) return false; // must be interrupt type
|
|
uint32_t endpoint = descriptors[offset+2];
|
|
uint32_t size = descriptors[offset+4] | (descriptors[offset+5] << 8);
|
|
uint32_t interval = descriptors[offset+6];
|
|
println(" endpoint = ", endpoint, HEX);
|
|
println(" size = ", size);
|
|
println(" interval = ", interval);
|
|
if ((endpoint & 0x0F) == 0) return false;
|
|
if ((endpoint & 0xF0) != 0x80) return false; // must be IN direction
|
|
in_pipe = new_Pipe(dev, 3, endpoint & 0x0F, 1, size, interval);
|
|
out_pipe = NULL;
|
|
in_size = size;
|
|
} else {
|
|
println("Two endpoint HID:");
|
|
if (descriptors[offset] != 7) return false;
|
|
if (descriptors[offset+1] != 5) return false; // endpoint descriptor
|
|
if (descriptors[offset+3] != 3) return false; // must be interrupt type
|
|
uint32_t endpoint1 = descriptors[offset+2];
|
|
uint32_t size1 = descriptors[offset+4] | (descriptors[offset+5] << 8);
|
|
uint32_t interval1 = descriptors[offset+6];
|
|
println(" endpoint = ", endpoint1, HEX);
|
|
println(" size = ", size1);
|
|
println(" interval = ", interval1);
|
|
if ((endpoint1 & 0x0F) == 0) return false;
|
|
if (descriptors[offset+7] != 7) return false;
|
|
if (descriptors[offset+8] != 5) return false; // endpoint descriptor
|
|
if (descriptors[offset+10] != 3) return false; // must be interrupt type
|
|
uint32_t endpoint2 = descriptors[offset+9];
|
|
uint32_t size2 = descriptors[offset+11] | (descriptors[offset+12] << 8);
|
|
uint32_t interval2 = descriptors[offset+13];
|
|
println(" endpoint = ", endpoint2, HEX);
|
|
println(" size = ", size2);
|
|
println(" interval = ", interval2);
|
|
if ((endpoint2 & 0x0F) == 0) return false;
|
|
if (((endpoint1 & 0xF0) == 0x80) && ((endpoint2 & 0xF0) == 0)) {
|
|
// first endpoint is IN, second endpoint is OUT
|
|
in_pipe = new_Pipe(dev, 3, endpoint1 & 0x0F, 1, size1, interval1);
|
|
//out_pipe = new_Pipe(dev, 3, endpoint2, 0, size2, interval2);
|
|
out_pipe = NULL; // TODO; fixme
|
|
in_size = size1;
|
|
out_size = size2;
|
|
} else if (((endpoint1 & 0xF0) == 0) && ((endpoint2 & 0xF0) == 0x80)) {
|
|
// first endpoint is OUT, second endpoint is IN
|
|
in_pipe = new_Pipe(dev, 3, endpoint2 & 0x0F, 1, size2, interval2);
|
|
//out_pipe = new_Pipe(dev, 3, endpoint1, 0, size1, interval1);
|
|
out_pipe = NULL; // TODO; fixme
|
|
in_size = size2;
|
|
out_size = size1;
|
|
} else {
|
|
return false;
|
|
}
|
|
//out_pipe->callback_function = out_callback;
|
|
}
|
|
in_pipe->callback_function = in_callback;
|
|
for (uint32_t i=0; i < TOPUSAGE_LIST_LEN; i++) {
|
|
//topusage_list[i] = 0;
|
|
topusage_drivers[i] = NULL;
|
|
}
|
|
// request the HID report descriptor
|
|
mk_setup(setup, 0x81, 6, 0x2200, descriptors[2], descsize); // get report desc
|
|
queue_Control_Transfer(dev, &setup, descriptor, this);
|
|
return true;
|
|
}
|
|
|
|
void USBHIDParser::control(const Transfer_t *transfer)
|
|
{
|
|
println("control callback (hid)");
|
|
print_hexbytes(transfer->buffer, transfer->length);
|
|
// To decode hex dump to human readable HID report summary:
|
|
// http://eleccelerator.com/usbdescreqparser/
|
|
uint32_t mesg = transfer->setup.word1;
|
|
println(" mesg = ", mesg, HEX);
|
|
if (mesg == 0x22000681 && transfer->length == descsize) { // HID report descriptor
|
|
println(" got report descriptor");
|
|
parse();
|
|
queue_Data_Transfer(in_pipe, report, in_size, this);
|
|
if (device->idVendor == 0x054C && device->idProduct == 0x0268) {
|
|
println("send special PS3 feature command");
|
|
mk_setup(setup, 0x21, 9, 0x03F4, 0, 4); // ps3 tell to send report 1?
|
|
static uint8_t ps3_feature_F4_report[] = {0x42, 0x0c, 0x00, 0x00};
|
|
queue_Control_Transfer(device, &setup, ps3_feature_F4_report, this);
|
|
}
|
|
}
|
|
}
|
|
|
|
void USBHIDParser::in_callback(const Transfer_t *transfer)
|
|
{
|
|
if (transfer->driver) {
|
|
((USBHIDParser*)(transfer->driver))->in_data(transfer);
|
|
}
|
|
}
|
|
|
|
void USBHIDParser::out_callback(const Transfer_t *transfer)
|
|
{
|
|
if (transfer->driver) {
|
|
((USBHIDParser*)(transfer->driver))->out_data(transfer);
|
|
}
|
|
}
|
|
|
|
// When the device goes away, we need to call disconnect_collection()
|
|
// for all drivers which claimed a top level collection
|
|
void USBHIDParser::disconnect()
|
|
{
|
|
for (uint32_t i=0; i < TOPUSAGE_LIST_LEN; i++) {
|
|
USBHIDInput *driver = topusage_drivers[i];
|
|
if (driver) {
|
|
driver->disconnect_collection(device);
|
|
topusage_drivers[i] = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Called when the HID device sends a report
|
|
void USBHIDParser::in_data(const Transfer_t *transfer)
|
|
{
|
|
/*Serial.print("HID: ");
|
|
uint8_t *pb = (uint8_t*)transfer->buffer;
|
|
for (uint8_t i = 0; i < transfer->length; i++) {
|
|
Serial.print(pb[i], HEX);
|
|
Serial.print(" ");
|
|
}
|
|
Serial.println(); */
|
|
|
|
print("HID: ");
|
|
print_hexbytes(transfer->buffer, transfer->length);
|
|
const uint8_t *buf = (const uint8_t *)transfer->buffer;
|
|
uint32_t len = transfer->length;
|
|
if (use_report_id == false) {
|
|
parse(0x0100, buf, len);
|
|
} else {
|
|
if (len > 1) {
|
|
parse(0x0100 | buf[0], buf + 1, len - 1);
|
|
}
|
|
}
|
|
queue_Data_Transfer(in_pipe, report, in_size, this);
|
|
}
|
|
|
|
|
|
void USBHIDParser::out_data(const Transfer_t *transfer)
|
|
{
|
|
}
|
|
|
|
// This no-inputs parse is meant to be used when we first get the
|
|
// HID report descriptor. It finds all the top level collections
|
|
// and allows drivers to claim them. This is always where we
|
|
// learn whether the reports will or will not use a Report ID byte.
|
|
void USBHIDParser::parse()
|
|
{
|
|
const uint8_t *p = descriptor;
|
|
const uint8_t *end = p + descsize;
|
|
uint16_t usage_page = 0;
|
|
uint16_t usage = 0;
|
|
uint8_t collection_level = 0;
|
|
uint8_t topusage_count = 0;
|
|
|
|
use_report_id = false;
|
|
while (p < end) {
|
|
uint8_t tag = *p;
|
|
if (tag == 0xFE) { // Long Item
|
|
p += *p + 3;
|
|
continue;
|
|
}
|
|
uint32_t val;
|
|
switch (tag & 0x03) { // Short Item data
|
|
case 0: val = 0;
|
|
p++;
|
|
break;
|
|
case 1: val = p[1];
|
|
p += 2;
|
|
break;
|
|
case 2: val = p[1] | (p[2] << 8);
|
|
p += 3;
|
|
break;
|
|
case 3: val = p[1] | (p[2] << 8) | (p[3] << 16) | (p[4] << 24);
|
|
p += 5;
|
|
break;
|
|
}
|
|
if (p > end) break;
|
|
|
|
switch (tag & 0xFC) {
|
|
case 0x84: // Report ID (global)
|
|
use_report_id = true;
|
|
break;
|
|
case 0x04: // Usage Page (global)
|
|
usage_page = val;
|
|
break;
|
|
case 0x08: // Usage (local)
|
|
usage = val;
|
|
break;
|
|
case 0xA0: // Collection
|
|
if (collection_level == 0 && topusage_count < TOPUSAGE_LIST_LEN) {
|
|
uint32_t topusage = ((uint32_t)usage_page << 16) | usage;
|
|
println("Found top level collection ", topusage, HEX);
|
|
//topusage_list[topusage_count] = topusage;
|
|
topusage_drivers[topusage_count] = find_driver(topusage);
|
|
topusage_count++;
|
|
}
|
|
collection_level++;
|
|
usage = 0;
|
|
break;
|
|
case 0xC0: // End Collection
|
|
if (collection_level > 0) {
|
|
collection_level--;
|
|
}
|
|
case 0x80: // Input
|
|
case 0x90: // Output
|
|
case 0xB0: // Feature
|
|
usage = 0;
|
|
break;
|
|
}
|
|
}
|
|
while (topusage_count < TOPUSAGE_LIST_LEN) {
|
|
//topusage_list[topusage_count] = 0;
|
|
topusage_drivers[topusage_count] = NULL;
|
|
topusage_count++;
|
|
}
|
|
}
|
|
|
|
// This is a list of all the drivers inherited from the USBHIDInput class.
|
|
// Unlike the list of USBDriver (managed in enumeration.cpp), drivers stay
|
|
// on this list even when they have claimed a top level collection.
|
|
USBHIDInput * USBHIDParser::available_hid_drivers_list = NULL;
|
|
|
|
void USBHIDParser::driver_ready_for_hid_collection(USBHIDInput *driver)
|
|
{
|
|
driver->next = NULL;
|
|
if (available_hid_drivers_list == NULL) {
|
|
available_hid_drivers_list = driver;
|
|
} else {
|
|
USBHIDInput *last = available_hid_drivers_list;
|
|
while (last->next) last = last->next;
|
|
last->next = driver;
|
|
}
|
|
}
|
|
|
|
// When a new top level collection is found, this function asks drivers
|
|
// if they wish to claim it. The driver taking ownership of the
|
|
// collection is returned, or NULL if no driver wants it.
|
|
USBHIDInput * USBHIDParser::find_driver(uint32_t topusage)
|
|
{
|
|
println("find_driver");
|
|
USBHIDInput *driver = available_hid_drivers_list;
|
|
while (driver) {
|
|
println(" driver ", (uint32_t)driver, HEX);
|
|
if (driver->claim_collection(device, topusage)) {
|
|
return driver;
|
|
}
|
|
driver = driver->next;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
// Extract 1 to 32 bits from the data array, starting at bitindex.
|
|
static uint32_t bitfield(const uint8_t *data, uint32_t bitindex, uint32_t numbits)
|
|
{
|
|
uint32_t output = 0;
|
|
uint32_t bitcount = 0;
|
|
data += (bitindex >> 3);
|
|
uint32_t offset = bitindex & 7;
|
|
if (offset) {
|
|
output = (*data++) >> offset;
|
|
bitcount = 8 - offset;
|
|
}
|
|
while (bitcount < numbits) {
|
|
output |= (uint32_t)(*data++) << bitcount;
|
|
bitcount += 8;
|
|
}
|
|
if (bitcount > numbits && numbits < 32) {
|
|
output &= ((1 << numbits) - 1);
|
|
}
|
|
return output;
|
|
}
|
|
|
|
// convert a number with the specified number of bits from unsigned to signed,
|
|
// so the result is a proper 32 bit signed integer.
|
|
static int32_t signext(uint32_t num, uint32_t bitcount)
|
|
{
|
|
if (bitcount < 32 && bitcount > 0 && (num & (1 << (bitcount-1)))) {
|
|
num |= ~((1 << bitcount) - 1);
|
|
}
|
|
return (int32_t)num;
|
|
}
|
|
|
|
// convert a tag's value to a signed integer.
|
|
static int32_t signedval(uint32_t num, uint8_t tag)
|
|
{
|
|
tag &= 3;
|
|
if (tag == 1) return (int8_t)num;
|
|
if (tag == 2) return (int16_t)num;
|
|
return (int32_t)num;
|
|
}
|
|
|
|
// parse the report descriptor and use it to feed the fields of the report
|
|
// to the drivers which have claimed its top level collections
|
|
void USBHIDParser::parse(uint16_t type_and_report_id, const uint8_t *data, uint32_t len)
|
|
{
|
|
const uint8_t *p = descriptor;
|
|
const uint8_t *end = p + descsize;
|
|
USBHIDInput *driver = NULL;
|
|
uint32_t topusage = 0;
|
|
uint8_t topusage_index = 0;
|
|
uint8_t collection_level = 0;
|
|
uint16_t usage[USAGE_LIST_LEN] = {0, 0};
|
|
uint8_t usage_count = 0;
|
|
uint8_t report_id = 0;
|
|
uint16_t report_size = 0;
|
|
uint16_t report_count = 0;
|
|
uint16_t usage_page = 0;
|
|
int32_t logical_min = 0;
|
|
int32_t logical_max = 0;
|
|
uint32_t bitindex = 0;
|
|
|
|
while (p < end) {
|
|
uint8_t tag = *p;
|
|
if (tag == 0xFE) { // Long Item (unsupported)
|
|
p += p[1] + 3;
|
|
continue;
|
|
}
|
|
uint32_t val;
|
|
switch (tag & 0x03) { // Short Item data
|
|
case 0: val = 0;
|
|
p++;
|
|
break;
|
|
case 1: val = p[1];
|
|
p += 2;
|
|
break;
|
|
case 2: val = p[1] | (p[2] << 8);
|
|
p += 3;
|
|
break;
|
|
case 3: val = p[1] | (p[2] << 8) | (p[3] << 16) | (p[4] << 24);
|
|
p += 5;
|
|
break;
|
|
}
|
|
if (p > end) break;
|
|
bool reset_local = false;
|
|
switch (tag & 0xFC) {
|
|
case 0x04: // Usage Page (global)
|
|
usage_page = val;
|
|
break;
|
|
case 0x14: // Logical Minimum (global)
|
|
logical_min = signedval(val, tag);
|
|
break;
|
|
case 0x24: // Logical Maximum (global)
|
|
logical_max = signedval(val, tag);
|
|
break;
|
|
case 0x74: // Report Size (global)
|
|
report_size = val;
|
|
break;
|
|
case 0x94: // Report Count (global)
|
|
report_count = val;
|
|
break;
|
|
case 0x84: // Report ID (global)
|
|
report_id = val;
|
|
break;
|
|
case 0x08: // Usage (local)
|
|
if (usage_count < USAGE_LIST_LEN) {
|
|
// Usages: 0 is reserved 0x1-0x1f is sort of reserved for top level things like
|
|
// 0x1 - Pointer - A collection... So lets try ignoring these
|
|
if (val > 0x1f) {
|
|
usage[usage_count++] = val;
|
|
}
|
|
}
|
|
break;
|
|
case 0x18: // Usage Minimum (local)
|
|
usage[0] = val;
|
|
usage_count = 255;
|
|
break;
|
|
case 0x28: // Usage Maximum (local)
|
|
usage[1] = val;
|
|
usage_count = 255;
|
|
break;
|
|
case 0xA0: // Collection
|
|
if (collection_level == 0) {
|
|
topusage = ((uint32_t)usage_page << 16) | usage[0];
|
|
driver = NULL;
|
|
if (topusage_index < TOPUSAGE_LIST_LEN) {
|
|
driver = topusage_drivers[topusage_index++];
|
|
}
|
|
}
|
|
// discard collection info if not top level, hopefully that's ok?
|
|
collection_level++;
|
|
reset_local = true;
|
|
break;
|
|
case 0xC0: // End Collection
|
|
if (collection_level > 0) {
|
|
collection_level--;
|
|
if (collection_level == 0 && driver != NULL) {
|
|
driver->hid_input_end();
|
|
driver = NULL;
|
|
}
|
|
}
|
|
reset_local = true;
|
|
break;
|
|
case 0x80: // Input
|
|
if (use_report_id && (report_id != (type_and_report_id & 0xFF))) {
|
|
// completely ignore and do not advance bitindex
|
|
// for descriptors of other report IDs
|
|
reset_local = true;
|
|
break;
|
|
}
|
|
if ((val & 1) || (driver == NULL)) {
|
|
// skip past constant fields or when no driver is listening
|
|
bitindex += report_count * report_size;
|
|
} else {
|
|
println("begin, usage=", topusage, HEX);
|
|
println(" type= ", val, HEX);
|
|
println(" min= ", logical_min);
|
|
println(" max= ", logical_max);
|
|
println(" reportcount=", report_count);
|
|
println(" usage count=", usage_count);
|
|
driver->hid_input_begin(topusage, val, logical_min, logical_max);
|
|
println("Input, total bits=", report_count * report_size);
|
|
if ((val & 2)) {
|
|
// ordinary variable format
|
|
uint32_t uindex = 0;
|
|
bool uminmax = false;
|
|
if (usage_count > USAGE_LIST_LEN || usage_count == 0) {
|
|
// usage numbers by min/max, not from list
|
|
uindex = usage[0];
|
|
uminmax = true;
|
|
}
|
|
for (uint32_t i=0; i < report_count; i++) {
|
|
uint32_t u;
|
|
if (uminmax) {
|
|
u = uindex;
|
|
if (uindex < usage[1]) uindex++;
|
|
} else {
|
|
u = usage[uindex++];
|
|
if (uindex >= USAGE_LIST_LEN-1) {
|
|
uindex = USAGE_LIST_LEN-1;
|
|
}
|
|
}
|
|
u |= (uint32_t)usage_page << 16;
|
|
print(" usage = ", u, HEX);
|
|
|
|
uint32_t n = bitfield(data, bitindex, report_size);
|
|
if (logical_min >= 0) {
|
|
println(" data = ", n);
|
|
driver->hid_input_data(u, n);
|
|
} else {
|
|
int32_t sn = signext(n, report_size);
|
|
println(" sdata = ", sn);
|
|
driver->hid_input_data(u, sn);
|
|
}
|
|
bitindex += report_size;
|
|
}
|
|
} else {
|
|
// array format, each item is a usage number
|
|
for (uint32_t i=0; i < report_count; i++) {
|
|
uint32_t u = bitfield(data, bitindex, report_size);
|
|
int n = u;
|
|
if (n >= logical_min && n <= logical_max) {
|
|
u |= (uint32_t)usage_page << 16;
|
|
print(" usage = ", u, HEX);
|
|
println(" data = 1");
|
|
driver->hid_input_data(u, 1);
|
|
} else {
|
|
print (" usage =", u, HEX);
|
|
print(" out of range: ", logical_min, HEX);
|
|
println(" ", logical_max, HEX);
|
|
}
|
|
bitindex += report_size;
|
|
}
|
|
}
|
|
}
|
|
reset_local = true;
|
|
break;
|
|
case 0x90: // Output
|
|
// TODO.....
|
|
reset_local = true;
|
|
break;
|
|
case 0xB0: // Feature
|
|
// TODO.....
|
|
reset_local = true;
|
|
break;
|
|
|
|
case 0x34: // Physical Minimum (global)
|
|
case 0x44: // Physical Maximum (global)
|
|
case 0x54: // Unit Exponent (global)
|
|
case 0x64: // Unit (global)
|
|
break; // Ignore these commonly used tags. Hopefully not needed?
|
|
|
|
case 0xA4: // Push (yikes! Hope nobody really uses this?!)
|
|
case 0xB4: // Pop (yikes! Hope nobody really uses this?!)
|
|
case 0x38: // Designator Index (local)
|
|
case 0x48: // Designator Minimum (local)
|
|
case 0x58: // Designator Maximum (local)
|
|
case 0x78: // String Index (local)
|
|
case 0x88: // String Minimum (local)
|
|
case 0x98: // String Maximum (local)
|
|
case 0xA8: // Delimiter (local)
|
|
default:
|
|
println("Ruh Roh, unsupported tag, not a good thing Scoob ", tag, HEX);
|
|
break;
|
|
}
|
|
if (reset_local) {
|
|
usage_count = 0;
|
|
usage[0] = 0;
|
|
usage[1] = 0;
|
|
}
|
|
}
|
|
}
|
|
|