// usb host experiments.... #include "host.h" uint32_t periodictable[32] __attribute__ ((aligned(4096), used)); uint8_t port_state; #define PORT_STATE_DISCONNECTED 0 #define PORT_STATE_DEBOUNCE 1 #define PORT_STATE_RESET 2 #define PORT_STATE_RECOVERY 3 #define PORT_STATE_ACTIVE 4 Device_t *rootdev=NULL; void setup() { // Test board has a USB data mux (this won't be on final Teensy 3.6) pinMode(32, OUTPUT); // pin 32 = USB switch, high=connect device digitalWrite(32, LOW); pinMode(30, OUTPUT); // pin 30 = debug info - use oscilloscope digitalWrite(30, LOW); // Teensy 3.6 has USB host power controlled by PTE6 PORTE_PCR6 = PORT_PCR_MUX(1); GPIOE_PDDR |= (1<<6); GPIOE_PSOR = (1<<6); // turn on USB host power while (!Serial) ; // wait Serial.println("USB Host Testing"); Serial.print("sizeof Device = "); Serial.println(sizeof(Device_t)); Serial.print("sizeof Pipe = "); Serial.println(sizeof(Pipe_t)); Serial.print("sizeof Transfer = "); Serial.println(sizeof(Transfer_t)); MPU_RGDAAC0 |= 0x30000000; MCG_C1 |= MCG_C1_IRCLKEN; // enable MCGIRCLK 32kHz OSC0_CR |= OSC_ERCLKEN; SIM_SOPT2 |= SIM_SOPT2_USBREGEN; // turn on USB regulator SIM_SOPT2 &= ~SIM_SOPT2_USBSLSRC; // use IRC for slow clock print("power up USBHS PHY"); SIM_USBPHYCTL |= SIM_USBPHYCTL_USBDISILIM; // disable USB current limit //SIM_USBPHYCTL = SIM_USBPHYCTL_USBDISILIM | SIM_USBPHYCTL_USB3VOUTTRG(6); // pg 237 SIM_SCGC3 |= SIM_SCGC3_USBHSDCD | SIM_SCGC3_USBHSPHY | SIM_SCGC3_USBHS; USBHSDCD_CLOCK = 33 << 2; print("init USBHS PHY & PLL"); // init process: page 1681-1682 USBPHY_CTRL_CLR = (USBPHY_CTRL_SFTRST | USBPHY_CTRL_CLKGATE); // // CTRL pg 1698 USBPHY_TRIM_OVERRIDE_EN_SET = 1; USBPHY_PLL_SIC = USBPHY_PLL_SIC_PLL_POWER | USBPHY_PLL_SIC_PLL_ENABLE | USBPHY_PLL_SIC_PLL_DIV_SEL(1) | USBPHY_PLL_SIC_PLL_EN_USB_CLKS; // wait for the PLL to lock int count=0; while ((USBPHY_PLL_SIC & USBPHY_PLL_SIC_PLL_LOCK) == 0) { count++; } print("PLL locked, waited ", count); // turn on power to PHY USBPHY_PWD = 0; delay(10); // sanity check, connect 470K pullup & 100K pulldown and watch D+ voltage change //USBPHY_ANACTRL_CLR = (1<<10); // turn off both 15K pulldowns... works! :) // sanity check, output clocks on pin 9 for testing //SIM_SOPT2 = SIM_SOPT2 & (~SIM_SOPT2_CLKOUTSEL(7)) | SIM_SOPT2_CLKOUTSEL(3); // LPO 1kHz //SIM_SOPT2 = SIM_SOPT2 & (~SIM_SOPT2_CLKOUTSEL(7)) | SIM_SOPT2_CLKOUTSEL(2); // Flash //SIM_SOPT2 = SIM_SOPT2 & (~SIM_SOPT2_CLKOUTSEL(7)) | SIM_SOPT2_CLKOUTSEL(6); // XTAL //SIM_SOPT2 = SIM_SOPT2 & (~SIM_SOPT2_CLKOUTSEL(7)) | SIM_SOPT2_CLKOUTSEL(7); // IRC 48MHz //SIM_SOPT2 = SIM_SOPT2 & (~SIM_SOPT2_CLKOUTSEL(7)) | SIM_SOPT2_CLKOUTSEL(4); // MCGIRCLK //CORE_PIN9_CONFIG = PORT_PCR_MUX(5); // CLKOUT on PTC3 Alt5 (Arduino pin 9) print("begin ehci reset"); USBHS_USBCMD |= USBHS_USBCMD_RST; count = 0; while (USBHS_USBCMD & USBHS_USBCMD_RST) { count++; } print(" reset waited ", count); for (int i=0; i < 32; i++) { periodictable[i] = 1; } port_state = PORT_STATE_DISCONNECTED; // turn on the USBHS controller USBHS_USBMODE = USBHS_USBMODE_TXHSD(5) | USBHS_USBMODE_CM(3); // host mode USBHS_USBINTR = 0; USBHS_PERIODICLISTBASE = (uint32_t)periodictable; USBHS_FRINDEX = 0; USBHS_ASYNCLISTADDR = 0; USBHS_USBCMD = USBHS_USBCMD_ITC(0) | USBHS_USBCMD_RS | USBHS_USBCMD_ASP(3) | USBHS_USBCMD_FS2 | USBHS_USBCMD_FS(1); // periodic table is 32 pointers //USBHS_PORTSC1 = USBHS_PORTSC_PP; USBHS_PORTSC1 |= USBHS_PORTSC_PP; //USBHS_PORTSC1 |= USBHS_PORTSC_PFSC; // force 12 Mbit/sec //USBHS_PORTSC1 |= USBHS_PORTSC_PHCD; // phy off Serial.print("USBHS_ASYNCLISTADDR = "); Serial.println(USBHS_ASYNCLISTADDR, HEX); Serial.print("USBHS_PERIODICLISTBASE = "); Serial.println(USBHS_PERIODICLISTBASE, HEX); Serial.print("periodictable = "); Serial.println((uint32_t)periodictable, HEX); NVIC_ENABLE_IRQ(IRQ_USBHS); USBHS_USBINTR = USBHS_USBINTR_UE | USBHS_USBINTR_PCE | USBHS_USBINTR_TIE0; delay(25); Serial.println("Plug in device..."); digitalWrite(32, HIGH); // connect device } void loop() { } void pulse(int usec) { // connect oscilloscope to see these pulses.... digitalWriteFast(30, HIGH); delayMicroseconds(usec); digitalWriteFast(30, LOW); } // EHCI registers page default // -------------- ---- ------- // USBHS_USBCMD 1599 00080000 USB Command // USBHS_USBSTS 1602 00000000 USB Status // USBHS_USBINTR 1606 00000000 USB Interrupt Enable // USBHS_FRINDEX 1609 00000000 Frame Index Register // USBHS_PERIODICLISTBASE 1610 undefine Periodic Frame List Base Address // USBHS_ASYNCLISTADDR 1612 undefine Asynchronous List Address // USBHS_PORTSC1 1619 00002000 Port Status and Control // USBHS_USBMODE 1629 00005000 USB Mode // USBHS_GPTIMERnCTL 1591 00000000 General Purpose Timer n Control // PORT_STATE_DISCONNECTED 0 // PORT_STATE_DEBOUNCE 1 // PORT_STATE_RESET 2 // PORT_STATE_RECOVERY 3 // PORT_STATE_ACTIVE 4 void usbhs_isr(void) { uint32_t stat = USBHS_USBSTS; USBHS_USBSTS = stat; // clear pending interrupts //stat &= USBHS_USBINTR; // mask away unwanted interrupts Serial.print("isr:"); Serial.print(stat, HEX); Serial.println(); if (stat & USBHS_USBSTS_PCI) { // port change detected const uint32_t portstat = USBHS_PORTSC1; Serial.print("port change: "); Serial.print(portstat, HEX); Serial.println(); USBHS_PORTSC1 = portstat | (USBHS_PORTSC_OCC|USBHS_PORTSC_PEC|USBHS_PORTSC_CSC); if (portstat & USBHS_PORTSC_OCC) { Serial.println(" overcurrent change"); } if (portstat & USBHS_PORTSC_CSC) { if (portstat & USBHS_PORTSC_CCS) { Serial.println(" connect"); if (port_state == PORT_STATE_DISCONNECTED || port_state == PORT_STATE_DEBOUNCE) { // 100 ms debounce (USB 2.0: TATTDB, page 150 & 188) port_state = PORT_STATE_DEBOUNCE; USBHS_GPTIMER0LD = 100000; // microseconds USBHS_GPTIMER0CTL = USBHS_GPTIMERCTL_RST | USBHS_GPTIMERCTL_RUN; stat &= ~USBHS_USBSTS_TI0; } } else { Serial.println(" disconnect"); port_state = PORT_STATE_DISCONNECTED; // TODO: delete & clean up device state... } } if (portstat & USBHS_PORTSC_PEC) { // PEC bit only detects disable Serial.println(" disable"); } else if (port_state == PORT_STATE_RESET && portstat & USBHS_PORTSC_PE) { Serial.println(" port enabled"); port_state = PORT_STATE_RECOVERY; // 10 ms reset recover (USB 2.0: TRSTRCY, page 151 & 188) USBHS_GPTIMER0LD = 10000; // microseconds USBHS_GPTIMER0CTL = USBHS_GPTIMERCTL_RST | USBHS_GPTIMERCTL_RUN; } if (portstat & USBHS_PORTSC_FPR) { Serial.println(" force resume"); } pulse(1); } if (stat & USBHS_USBSTS_TI0) { // timer 0 Serial.println("timer"); pulse(2); if (port_state == PORT_STATE_DEBOUNCE) { port_state = PORT_STATE_RESET; USBHS_PORTSC1 |= USBHS_PORTSC_PR; // begin reset sequence Serial.println(" begin reset"); } else if (port_state == PORT_STATE_RECOVERY) { port_state = PORT_STATE_ACTIVE; Serial.println(" end recovery"); // HCSPARAMS TTCTRL page 1671 rootdev = new_Device((USBHS_PORTSC1 >> 26) & 3, 0, 0); } } } Device_t * new_Device(uint32_t speed, uint32_t hub_addr, uint32_t hub_port) { Device_t *dev; Serial.print("new_Device: "); switch (speed) { case 0: Serial.print("12"); break; case 1: Serial.print("1.5"); break; case 2: Serial.print("480"); break; default: Serial.print("??"); } Serial.println(" Mbit/sec"); dev = allocate_Device(); if (!dev) return NULL; dev->speed = speed; dev->address = 1; // TODO: dynamic assign address dev->hub_address = hub_addr; dev->hub_port = hub_port; dev->control_pipe = new_Pipe(dev, 0, 0, 0, 8); if (!dev->control_pipe) { free_Device(dev); return NULL; } static uint8_t buffer[8]; dev->control_pipe->direction = 1; // 1=IN dev->setup.bmRequestType = 0x80; dev->setup.bRequest = 0x06; // 6=GET_DESCRIPTOR dev->setup.wValue = 0x0100; dev->setup.wIndex = 0x0000; dev->setup.wLength = 8; Transfer_t *transfer = new_Transfer(dev->control_pipe, buffer, 8); if (transfer) queue_Transfer(transfer); return dev; } static uint32_t QH_capabilities1(uint32_t nak_count_reload, uint32_t control_endpoint_flag, uint32_t max_packet_length, uint32_t head_of_list, uint32_t data_toggle_control, uint32_t speed, uint32_t endpoint_number, uint32_t inactivate, uint32_t address) { return ( (nak_count_reload << 28) | (control_endpoint_flag << 27) | (max_packet_length << 16) | (head_of_list << 15) | (data_toggle_control << 14) | (speed << 12) | (endpoint_number << 8) | (inactivate << 7) | (address << 0) ); } static uint32_t QH_capabilities2(uint32_t high_bw_mult, uint32_t hub_port_number, uint32_t hub_address, uint32_t split_completion_mask, uint32_t interrupt_schedule_mask) { return ( (high_bw_mult << 30) | (hub_port_number << 23) | (hub_address << 16) | (split_completion_mask << 8) | (interrupt_schedule_mask << 0) ); } Pipe_t * new_Pipe(Device_t *dev, uint32_t type, uint32_t endpoint, uint32_t direction, uint32_t max_packet_len) { Pipe_t *pipe; uint32_t c=0, dtc=0; Serial.println("new_Pipe"); pipe = allocate_Pipe(); if (!pipe) return NULL; pipe->qh.current = 0; pipe->qh.next = 1; pipe->qh.alt_next = 1; pipe->qh.token = 0; pipe->qh.buffer[0] = 0; pipe->qh.buffer[1] = 0; pipe->qh.buffer[2] = 0; pipe->qh.buffer[3] = 0; pipe->qh.buffer[4] = 0; if (pipe->type == 0) { // control if (dev->speed < 2) c = 1; dtc = 1; } else if (pipe->type == 2) { // bulk } else if (pipe->type == 3) { // interrupt } pipe->qh.capabilities[0] = QH_capabilities1(15, c, max_packet_len, 0, dtc, dev->speed, endpoint, 0, dev->address); pipe->qh.capabilities[1] = QH_capabilities2(1, dev->hub_port, dev->hub_address, 0, 0); if (pipe->type == 0 || pipe->type == 2) { // control or bulk: add to async queue Pipe_t *list = (Pipe_t *)USBHS_ASYNCLISTADDR; if (list == NULL) { pipe->qh.capabilities[0] |= 0x8000; // H bit pipe->qh.horizontal_link = (uint32_t)&(pipe->qh) | 2; // 2=QH USBHS_ASYNCLISTADDR = (uint32_t)&(pipe->qh); USBHS_USBCMD |= USBHS_USBCMD_ASE; // enable async schedule Serial.println(" first in async list"); } else { // EHCI 1.0: section 4.8.1, page 72 pipe->qh.horizontal_link = list->qh.horizontal_link; list->qh.horizontal_link = (uint32_t)&(pipe->qh) | 2; Serial.println(" added to async list"); } } else if (pipe->type == 3) { // interrupt: add to periodic schedule // TODO: link it into the periodic table } return pipe; } // Fill in the qTD fields (token & data) // t the Transfer qTD to initialize // buf data to transfer // len length of data // pid type of packet: 0=OUT, 1=IN, 2=SETUP // data01 value of DATA0/DATA1 toggle on 1st packet // irq whether to generate an interrupt when transfer complete // void init_qTD(volatile Transfer_t *t, void *buf, uint32_t len, uint32_t pid, uint32_t data01, bool irq) { t->qtd.alt_next = 1; // 1=terminate if (data01) data01 = 0x80000000; t->qtd.token = data01 | (len << 16) | (irq ? 0x8000 : 0) | (pid << 8); uint32_t addr = (uint32_t)buf; t->qtd.buffer[0] = addr; addr &= 0xFFFFF000; t->qtd.buffer[1] = addr + 0x1000; t->qtd.buffer[2] = addr + 0x2000; t->qtd.buffer[3] = addr + 0x3000; t->qtd.buffer[4] = addr + 0x4000; } // Create a list of Transfers // Transfer_t * new_Transfer(Pipe_t *pipe, void *buffer, uint32_t len) { Serial.println("new_Transfer"); Transfer_t *transfer = allocate_Transfer(); if (!transfer) return NULL; transfer->pipe = pipe; if (pipe->type == 0) { // control transfer Transfer_t *data, *status; uint32_t status_direction; if (len > 16384) { free_Transfer(transfer); return NULL; } status = allocate_Transfer(); if (!status) { free_Transfer(transfer); return NULL; } if (len > 0) { data = allocate_Transfer(); if (!data) { free_Transfer(transfer); free_Transfer(status); return NULL; } init_qTD(data, buffer, len, pipe->direction, 1, false); transfer->qtd.next = (uint32_t)data; data->qtd.next = (uint32_t)status; data->pipe = pipe; status_direction = pipe->direction ^ 1; } else { transfer->qtd.next = (uint32_t)status; status_direction = 1; // always IN, USB 2.0 page 226 } init_qTD(transfer, &(pipe->device->setup), 8, 2, 0, false); init_qTD(status, NULL, 0, status_direction, 1, true); status->pipe = pipe; status->qtd.next = 1; } else { // bulk, interrupt or isochronous transfer free_Transfer(transfer); return NULL; } return transfer; } void queue_Transfer(Transfer_t *transfer) { Serial.println("queue_Transfer"); Pipe_t *pipe = transfer->pipe; Transfer_t *last = (Transfer_t *)(pipe->qh.next); if ((uint32_t)last & 1) { pipe->qh.next = (uint32_t)transfer; Serial.println(" first on QH"); } else { while ((last->qtd.next & 1) == 0) last = (Transfer_t *)(last->qtd.next); last->qtd.next = (uint32_t)transfer; Serial.println(" added to qTD list"); } } void print(const char *s) { Serial.println(s); delay(10); } void print(const char *s, int num) { Serial.print(s); Serial.println(num); delay(10); } // Memory allocation... for now, just simplest leaky way to get started Device_t * allocate_Device(void) { static Device_t mem[3]; static size_t count=0; if (count >= sizeof(mem)/sizeof(Device_t)) return NULL; return &mem[count++]; } void free_Device(Device_t *q) { } Pipe_t * allocate_Pipe(void) { static Pipe_t mem[6] __attribute__ ((aligned(64))); static size_t count=0; if (count >= sizeof(mem)/sizeof(Pipe_t)) return NULL; return &mem[count++]; } void free_Pipe(Pipe_t *q) { } Transfer_t * allocate_Transfer(void) { static Transfer_t mem[22] __attribute__ ((aligned(64))); static size_t count=0; if (count >= sizeof(mem)/sizeof(Transfer_t)) return NULL; return &mem[count++]; } void free_Transfer(Transfer_t *q) { }