/* USB EHCI Host for Teensy 3.6 * Copyright 2017 Paul Stoffregen (paul@pjrc.com) * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include #include "USBHost_t36.h" // Read this header first for key info #define print USBHost::print_ #define println USBHost::println_ void MIDIDevice::init() { contribute_Pipes(mypipes, sizeof(mypipes)/sizeof(Pipe_t)); contribute_Transfers(mytransfers, sizeof(mytransfers)/sizeof(Transfer_t)); contribute_String_Buffers(mystring_bufs, sizeof(mystring_bufs)/sizeof(strbuf_t)); handleNoteOff = NULL; handleNoteOn = NULL; handleVelocityChange = NULL; handleControlChange = NULL; handleProgramChange = NULL; handleAfterTouch = NULL; handlePitchChange = NULL; handleSysEx = NULL; handleRealTimeSystem = NULL; handleTimeCodeQuarterFrame = NULL; rx_head = 0; rx_tail = 0; driver_ready_for_device(this); } // Audio Class-Specific Descriptor Types (audio 1.0, page 99) // CS_UNDEFINED 0x20 // CS_DEVICE 0x21 // CS_CONFIGURATION 0x22 // CS_STRING 0x23 // CS_INTERFACE 0x24 // CS_ENDPOINT 0x25 // MS Class-Specific Interface Descriptor Subtypes (midi 1.0, page 36) // MS_DESCRIPTOR_UNDEFINED 0x00 // MS_HEADER 0x01 // MIDI_IN_JACK 0x02 // MIDI_OUT_JACK 0x03 // ELEMENT 0x04 // MS Class-Specific Endpoint Descriptor Subtypes (midi 1.0, page 36) // DESCRIPTOR_UNDEFINED 0x00 // MS_GENERAL 0x01 // MS MIDI IN and OUT Jack types (midi 1.0, page 36) // JACK_TYPE_UNDEFINED 0x00 // EMBEDDED 0x01 // EXTERNAL 0x02 // Endpoint Control Selectors (midi 1.0, page 36) // EP_CONTROL_UNDEFINED 0x00 // ASSOCIATION_CONTROL 0x01 bool MIDIDevice::claim(Device_t *dev, int type, const uint8_t *descriptors, uint32_t len) { // only claim at interface level if (type != 1) return false; println("MIDIDevice claim this=", (uint32_t)this, HEX); println("len = ", len); const uint8_t *p = descriptors; const uint8_t *end = p + len; if (p[0] != 9 || p[1] != 4) return false; // interface descriptor //println(" bInterfaceClass=", p[5]); //println(" bInterfaceSubClass=", p[6]); if (p[5] != 1) return false; // bInterfaceClass: 1 = Audio class if (p[6] != 3) return false; // bInterfaceSubClass: 3 = MIDI p += 9; println(" Interface is MIDI"); rx_ep = 0; tx_ep = 0; while (p < end) { len = *p; if (len < 4) return false; // all audio desc are at least 4 bytes if (p + len > end) return false; // reject if beyond end of data uint32_t type = p[1]; //println("type: ", type); if (type == 4 || type == 11) break; // interface or IAD, not for us if (type == 0x24) { // 0x24 = Audio CS_INTERFACE, audio 1.0, page 99 uint32_t subtype = p[2]; //println("subtype: ", subtype); if (subtype == 1) { // Interface Header, midi 1.0, page 21 println(" MIDI Header (ignored)"); } else if (subtype == 2) { // MIDI IN Jack, midi 1.0, page 22 println(" MIDI IN Jack (ignored)"); } else if (subtype == 3) { // MIDI OUT Jack, midi 1.0, page 22 println(" MIDI OUT Jack (ignored)"); } else if (subtype == 4) { // Element Descriptor, midi 1.0, page 23-24 println(" MIDI Element (ignored)"); } else { return false; // unknown } } else if (type == 5) { // endpoint descriptor if (p[0] < 7) return false; // at least 7 bytes if (p[3] != 2) return false; // must be bulk type println(" MIDI Endpoint: ", p[2], HEX); switch (p[2] & 0xF0) { case 0x80: // IN endpoint if (rx_ep == 0) { rx_ep = p[2] & 0x0F; rx_size = p[4] | (p[5] << 8); println(" rx_size = ", rx_size); } break; case 0x00: // OUT endpoint if (tx_ep == 0) { tx_ep = p[2]; tx_size = p[4] | (p[5] << 8); println(" tx_size = ", tx_size); } break; default: return false; } } else if (type == 37) { // MIDI endpoint info, midi 1.0: 6.2.2, page 26 println(" MIDI Endpoint Jack Association (ignored)"); } else { return false; // unknown } p += len; } // if an IN endpoint was found, create its pipe if (rx_ep && rx_size <= MAX_PACKET_SIZE) { rxpipe = new_Pipe(dev, 2, rx_ep, 1, rx_size); if (rxpipe) { rxpipe->callback_function = rx_callback; queue_Data_Transfer(rxpipe, rx_buffer, rx_size, this); rx_packet_queued = true; } } else { rxpipe = NULL; } // if an OUT endpoint was found, create its pipe if (tx_ep && tx_size <= MAX_PACKET_SIZE) { txpipe = new_Pipe(dev, 2, tx_ep, 0, tx_size); if (txpipe) { txpipe->callback_function = tx_callback; } } else { txpipe = NULL; } rx_head = 0; rx_tail = 0; msg_channel = 0; msg_type = 0; msg_data1 = 0; msg_data2 = 0; msg_sysex_len = 0; // claim if either pipe created return (rxpipe || txpipe); } void MIDIDevice::rx_callback(const Transfer_t *transfer) { if (transfer->driver) { ((MIDIDevice *)(transfer->driver))->rx_data(transfer); } } void MIDIDevice::tx_callback(const Transfer_t *transfer) { if (transfer->driver) { ((MIDIDevice *)(transfer->driver))->tx_data(transfer); } } void MIDIDevice::rx_data(const Transfer_t *transfer) { println("MIDIDevice Receive"); print(" MIDI Data: "); print_hexbytes(transfer->buffer, rx_size); uint32_t head = rx_head; uint32_t tail = rx_tail; uint32_t len = (transfer->length - ((transfer->qtd.token >> 16) & 0x7FFF)) >> 2; for (uint32_t i=0; i < len; i++) { uint32_t msg = rx_buffer[i]; if (msg) { if (++head >= RX_QUEUE_SIZE) head = 0; rx_queue[head] = msg; } } rx_head = head; rx_tail = tail; uint32_t avail = (head < tail) ? tail - head - 1 : RX_QUEUE_SIZE - 1 - head + tail; println("rx_size = ", rx_size); println("avail = ", avail); if (avail >= (uint32_t)(rx_size>>2)) { // enough space to accept another full packet println("queue another receive packet"); queue_Data_Transfer(rxpipe, rx_buffer, rx_size, this); rx_packet_queued = true; } else { // queue can't accept another packet's data, so leave // the data waiting on the device until we can accept it println("wait to receive more packets"); rx_packet_queued = false; } } void MIDIDevice::tx_data(const Transfer_t *transfer) { println("MIDIDevice transmit complete"); print(" MIDI Data: "); print_hexbytes(transfer->buffer, tx_size); // TODO: return the buffer to the pool... } void MIDIDevice::disconnect() { // should rx_queue be cleared? // as-is, the user can still read MIDI messages // which arrived before the device disconnected. rxpipe = NULL; txpipe = NULL; } bool MIDIDevice::read(uint8_t channel, uint8_t cable) { uint32_t n, head, tail, avail, ch, type1, type2; head = rx_head; tail = rx_tail; if (head == tail) return false; if (++tail >= RX_QUEUE_SIZE) tail = 0; n = rx_queue[tail]; rx_tail = tail; if (!rx_packet_queued && rxpipe) { avail = (head < tail) ? tail - head - 1 : RX_QUEUE_SIZE - 1 - head + tail; if (avail >= (uint32_t)(rx_size>>2)) { __disable_irq(); queue_Data_Transfer(rxpipe, rx_buffer, rx_size, this); __enable_irq(); } } println("read: ", n, HEX); type1 = n & 15; type2 = (n >> 12) & 15; ch = ((n >> 8) & 15) + 1; if (type1 >= 0x08 && type1 <= 0x0E) { if (channel && channel != ch) { // ignore other channels when user wants single channel read return false; } if (type1 == 0x08 && type2 == 0x08) { msg_type = 8; // 8 = Note off if (handleNoteOff) (*handleNoteOff)(ch, (n >> 16), (n >> 24)); } else if (type1 == 0x09 && type2 == 0x09) { if ((n >> 24) > 0) { msg_type = 9; // 9 = Note on if (handleNoteOn) (*handleNoteOn)(ch, (n >> 16), (n >> 24)); } else { msg_type = 8; // 8 = Note off if (handleNoteOff) (*handleNoteOff)(ch, (n >> 16), (n >> 24)); } } else if (type1 == 0x0A && type2 == 0x0A) { msg_type = 10; // 10 = Poly Pressure if (handleVelocityChange) (*handleVelocityChange)(ch, (n >> 16), (n >> 24)); } else if (type1 == 0x0B && type2 == 0x0B) { msg_type = 11; // 11 = Control Change if (handleControlChange) (*handleControlChange)(ch, (n >> 16), (n >> 24)); } else if (type1 == 0x0C && type2 == 0x0C) { msg_type = 12; // 12 = Program Change if (handleProgramChange) (*handleProgramChange)(ch, (n >> 16)); } else if (type1 == 0x0D && type2 == 0x0D) { msg_type = 13; // 13 = After Touch if (handleAfterTouch) (*handleAfterTouch)(ch, (n >> 16)); } else if (type1 == 0x0E && type2 == 0x0E) { msg_type = 14; // 14 = Pitch Bend if (handlePitchChange) (*handlePitchChange)(ch, ((n >> 16) & 0x7F) | ((n >> 17) & 0x3F80)); } else { return false; } msg_channel = ch; msg_data1 = (n >> 16); msg_data2 = (n >> 24); return true; } if (type1 == 0x04) { sysex_byte(n >> 8); sysex_byte(n >> 16); sysex_byte(n >> 24); return false; } if (type1 >= 0x05 && type1 <= 0x07) { sysex_byte(n >> 8); if (type1 >= 0x06) sysex_byte(n >> 16); if (type1 == 0x07) sysex_byte(n >> 24); msg_data1 = msg_sysex_len; msg_sysex_len = 0; msg_type = 15; // 15 = Sys Ex if (handleSysEx) (*handleSysEx)(msg_sysex, msg_data1, 1); return true; } // TODO: single byte messages // TODO: time code messages? return false; } void MIDIDevice::sysex_byte(uint8_t b) { // when buffer is full, send another chunk to handler. if (msg_sysex_len >= SYSEX_MAX_LEN) { if (handleSysEx) { (*handleSysEx)(msg_sysex, msg_sysex_len, 0); msg_sysex_len = 0; } } if (msg_sysex_len < SYSEX_MAX_LEN) { msg_sysex[msg_sysex_len++] = b; } }