/* USB EHCI Host for Teensy 3.6 * Copyright 2017 Paul Stoffregen (paul@pjrc.com) * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include #include "USBHost.h" static USBHostDriver *available_drivers = NULL; static uint8_t enumbuf[256] __attribute__ ((aligned(16))); static uint32_t assign_addr(void); static void pipe_set_maxlen(Pipe_t *pipe, uint32_t maxlen); static void pipe_set_addr(Pipe_t *pipe, uint32_t addr); void USBHost::driver_ready_for_device(USBHostDriver *driver) { driver->next = NULL; if (available_drivers == NULL) { available_drivers = driver; } else { // append to end of list USBHostDriver *last = available_drivers; while (last->next) last = last->next; last->next = driver; } } // Create a new device and begin the enumeration process // Device_t * USBHost::new_Device(uint32_t speed, uint32_t hub_addr, uint32_t hub_port) { Device_t *dev; Serial.print("new_Device: "); switch (speed) { case 0: Serial.print("12"); break; case 1: Serial.print("1.5"); break; case 2: Serial.print("480"); break; default: Serial.print("??"); } Serial.println(" Mbit/sec"); dev = allocate_Device(); if (!dev) return NULL; memset(dev, 0, sizeof(Device_t)); dev->speed = speed; dev->address = 0; dev->hub_address = hub_addr; dev->hub_port = hub_port; dev->control_pipe = new_Pipe(dev, 0, 0, 0, 8); if (!dev->control_pipe) { free_Device(dev); return NULL; } dev->control_pipe->callback_function = &enumeration; dev->control_pipe->direction = 1; // 1=IN // TODO: exclusive access to enumeration process // any new devices detected while enumerating would // go onto a waiting list mk_setup(dev->setup, 0x80, 6, 0x0100, 0, 8); // 6=GET_DESCRIPTOR new_Transfer(dev->control_pipe, enumbuf, 8); return dev; } void USBHost::enumeration(const Transfer_t *transfer) { uint32_t len; Serial.print(" CALLBACK: "); print_hexbytes(transfer->buffer, transfer->length); //print(transfer); Device_t *dev = transfer->pipe->device; while (1) { // Within this large switch/case, "break" means we've done // some work, but more remains to be done in a different // state. Generally break is used after parsing received // data, but what happens next could be different states. // When completed, return is used. Generally, return happens // only after a new control transfer is queued, or when // enumeration is complete and no more communication is needed. switch (dev->enum_state) { case 0: // read 8 bytes of device desc, set max packet, and send set address pipe_set_maxlen(dev->control_pipe, enumbuf[7]); mk_setup(dev->setup, 0, 5, assign_addr(), 0, 0); // 5=SET_ADDRESS new_Transfer(dev->control_pipe, NULL, 0); dev->enum_state = 1; return; case 1: // request all 18 bytes of device descriptor pipe_set_addr(dev->control_pipe, dev->setup.wValue); mk_setup(dev->setup, 0x80, 6, 0x0100, 0, 18); // 6=GET_DESCRIPTOR new_Transfer(dev->control_pipe, enumbuf, 18); dev->enum_state = 2; return; case 2: // parse 18 device desc bytes dev->bDeviceClass = enumbuf[4]; dev->bDeviceSubClass = enumbuf[5]; dev->bDeviceProtocol = enumbuf[6]; dev->idVendor = enumbuf[8] | (enumbuf[9] << 8); dev->idProduct = enumbuf[10] | (enumbuf[11] << 8); enumbuf[0] = enumbuf[14]; enumbuf[1] = enumbuf[15]; enumbuf[2] = enumbuf[16]; if ((enumbuf[0] | enumbuf[1] | enumbuf[2]) > 0) { dev->enum_state = 3; } else { dev->enum_state = 11; } break; case 3: // request Language ID len = sizeof(enumbuf) - 4; mk_setup(dev->setup, 0x80, 6, 0x0300, 0, len); // 6=GET_DESCRIPTOR new_Transfer(dev->control_pipe, enumbuf + 4, len); dev->enum_state = 4; return; case 4: // parse Language ID if (enumbuf[4] < 4 || enumbuf[5] != 3) { dev->enum_state = 11; } else { dev->LanguageID = enumbuf[6] | (enumbuf[7] << 8); if (enumbuf[0]) dev->enum_state = 5; else if (enumbuf[1]) dev->enum_state = 7; else if (enumbuf[2]) dev->enum_state = 9; else dev->enum_state = 11; } break; case 5: // request Manufacturer string len = sizeof(enumbuf) - 4; mk_setup(dev->setup, 0x80, 6, 0x0300 | enumbuf[0], dev->LanguageID, len); new_Transfer(dev->control_pipe, enumbuf + 4, len); dev->enum_state = 6; return; case 6: // parse Manufacturer string // TODO: receive the string... if (enumbuf[1]) dev->enum_state = 7; else if (enumbuf[2]) dev->enum_state = 9; else dev->enum_state = 11; break; case 7: // request Product string len = sizeof(enumbuf) - 4; mk_setup(dev->setup, 0x80, 6, 0x0300 | enumbuf[1], dev->LanguageID, len); new_Transfer(dev->control_pipe, enumbuf + 4, len); dev->enum_state = 8; return; case 8: // parse Product string // TODO: receive the string... if (enumbuf[2]) dev->enum_state = 9; else dev->enum_state = 11; break; case 9: // request Serial Number string len = sizeof(enumbuf) - 4; mk_setup(dev->setup, 0x80, 6, 0x0300 | enumbuf[2], dev->LanguageID, len); new_Transfer(dev->control_pipe, enumbuf + 4, len); dev->enum_state = 10; return; case 10: // parse Serial Number string // TODO: receive the string... dev->enum_state = 11; break; case 11: // request first 9 bytes of config desc mk_setup(dev->setup, 0x80, 6, 0x0200, 0, 9); // 6=GET_DESCRIPTOR new_Transfer(dev->control_pipe, enumbuf, 9); dev->enum_state = 12; return; case 12: // read 9 bytes, request all of config desc len = enumbuf[2] | (enumbuf[3] << 8); Serial.print("Config data length = "); Serial.println(len); if (len > sizeof(enumbuf)) { // TODO: how to handle device with too much config data } mk_setup(dev->setup, 0x80, 6, 0x0200, 0, len); // 6=GET_DESCRIPTOR new_Transfer(dev->control_pipe, enumbuf, len); dev->enum_state = 13; return; case 13: // read all config desc, send set config Serial.print("bNumInterfaces = "); Serial.println(enumbuf[4]); Serial.print("bConfigurationValue = "); Serial.println(enumbuf[5]); dev->bmAttributes = enumbuf[7]; dev->bMaxPower = enumbuf[8]; // TODO: actually do something with interface descriptor? mk_setup(dev->setup, 0, 9, enumbuf[5], 0, 0); // 9=SET_CONFIGURATION new_Transfer(dev->control_pipe, NULL, 0); dev->enum_state = 14; return; case 14: // device is now configured claim_drivers(dev); dev->enum_state = 15; // TODO: unlock exclusive access to enumeration process // if any detected devices are waiting, start the first return; case 15: // control transfers for other stuff? // TODO: handle other standard control: set/clear feature, etc for (USBHostDriver *d = dev->drivers; d != NULL; d = d->next) { if (d->control(transfer)) { // this driver processed the control transfer reply return; } } default: return; } } } void USBHost::claim_drivers(Device_t *dev) { USBHostDriver *driver, *prev=NULL; // first check if any driver wishes to claim the entire device for (driver=available_drivers; driver != NULL; driver = driver->next) { if (driver->claim(dev, 0, enumbuf + 9)) { if (prev) { prev->next = driver->next; } else { available_drivers = driver->next; } driver->device = dev; driver->next = NULL; dev->drivers = driver; return; } prev = driver; } // TODO: parse interfaces from config descriptor // try claim_interface on drivers } static uint32_t assign_addr(void) { return 29; // TODO: when multiple devices, assign a unique address } static void pipe_set_maxlen(Pipe_t *pipe, uint32_t maxlen) { Serial.print("pipe_set_maxlen "); Serial.println(maxlen); pipe->qh.capabilities[0] = (pipe->qh.capabilities[0] & 0x8000FFFF) | (maxlen << 16); } static void pipe_set_addr(Pipe_t *pipe, uint32_t addr) { Serial.print("pipe_set_addr "); Serial.println(addr); pipe->qh.capabilities[0] = (pipe->qh.capabilities[0] & 0xFFFFFF80) | addr; } //static uint32_t pipe_get_addr(Pipe_t *pipe) //{ // return pipe->qh.capabilities[0] & 0xFFFFFF80; //}