// usb host experiments.... uint32_t periodictable[64] __attribute__ ((aligned(4096), used)); volatile uint32_t qh[12] __attribute__ ((aligned(64))); uint32_t qtd_dummy[8] __attribute__ ((aligned(32))); uint32_t qtd_setup[8] __attribute__ ((aligned(32))); uint32_t qtd_in[8] __attribute__ ((aligned(32))); uint32_t qtd_outack[8] __attribute__ ((aligned(32))); uint32_t setupbuf[2] __attribute__ ((aligned(8))); uint32_t inbuf[16] __attribute__ ((aligned(64))); void setup() { // Test board has a USB data mux (this won't be on final Teensy 3.6) pinMode(32, OUTPUT); // pin 32 = USB switch, high=connect device digitalWrite(32, LOW); // Teensy 3.6 has USB host power controlled by PTE6 PORTE_PCR6 = PORT_PCR_MUX(1); GPIOE_PDDR |= (1<<6); GPIOE_PSOR = (1<<6); // turn on USB host power while (!Serial) ; // wait print("USB Host Testing"); print_mpu(); MPU_RGDAAC0 |= 0x30000000; MCG_C1 |= MCG_C1_IRCLKEN; // enable MCGIRCLK 32kHz OSC0_CR |= OSC_ERCLKEN; SIM_SOPT2 |= SIM_SOPT2_USBREGEN; // turn on USB regulator SIM_SOPT2 &= ~SIM_SOPT2_USBSLSRC; // use IRC for slow clock print("power up USBHS PHY"); SIM_USBPHYCTL |= SIM_USBPHYCTL_USBDISILIM; // disable USB current limit //SIM_USBPHYCTL = SIM_USBPHYCTL_USBDISILIM | SIM_USBPHYCTL_USB3VOUTTRG(6); // pg 237 SIM_SCGC3 |= SIM_SCGC3_USBHSDCD | SIM_SCGC3_USBHSPHY | SIM_SCGC3_USBHS; USBHSDCD_CLOCK = 33 << 2; print("init USBHS PHY & PLL"); // init process: page 1681-1682 USBPHY_CTRL_CLR = (USBPHY_CTRL_SFTRST | USBPHY_CTRL_CLKGATE); // // CTRL pg 1698 USBPHY_TRIM_OVERRIDE_EN_SET = 1; USBPHY_PLL_SIC = USBPHY_PLL_SIC_PLL_POWER | USBPHY_PLL_SIC_PLL_ENABLE | USBPHY_PLL_SIC_PLL_DIV_SEL(1) | USBPHY_PLL_SIC_PLL_EN_USB_CLKS; // wait for the PLL to lock int count=0; while ((USBPHY_PLL_SIC & USBPHY_PLL_SIC_PLL_LOCK) == 0) { count++; } print("PLL locked, waited ", count); // turn on power to PHY USBPHY_PWD = 0; delay(10); // sanity check, connect 470K pullup & 100K pulldown and watch D+ voltage change //USBPHY_ANACTRL_CLR = (1<<10); // turn off both 15K pulldowns... works! :) // sanity check, output clocks on pin 9 for testing //SIM_SOPT2 = SIM_SOPT2 & (~SIM_SOPT2_CLKOUTSEL(7)) | SIM_SOPT2_CLKOUTSEL(3); // LPO 1kHz //SIM_SOPT2 = SIM_SOPT2 & (~SIM_SOPT2_CLKOUTSEL(7)) | SIM_SOPT2_CLKOUTSEL(2); // Flash //SIM_SOPT2 = SIM_SOPT2 & (~SIM_SOPT2_CLKOUTSEL(7)) | SIM_SOPT2_CLKOUTSEL(6); // XTAL //SIM_SOPT2 = SIM_SOPT2 & (~SIM_SOPT2_CLKOUTSEL(7)) | SIM_SOPT2_CLKOUTSEL(7); // IRC 48MHz //SIM_SOPT2 = SIM_SOPT2 & (~SIM_SOPT2_CLKOUTSEL(7)) | SIM_SOPT2_CLKOUTSEL(4); // MCGIRCLK //CORE_PIN9_CONFIG = PORT_PCR_MUX(5); // CLKOUT on PTC3 Alt5 (Arduino pin 9) // EHCI registers page default // -------------- ---- ------- // USBHS_USBCMD 1599 00080000 // USBHS_USBSTS 1602 00000000 // USBHS_USBINTR 1606 00000000 // USBHS_FRINDEX 1609 00000000 // USBHS_PERIODICLISTBASE 1610 undefine // USBHS_ASYNCLISTADDR 1612 undefine // USBHS_PORTSC 1619 00002000 // USBHS_USBMODE 1629 00005000 print("begin ehci reset"); USBHS_USBCMD |= USBHS_USBCMD_RST; count = 0; while (USBHS_USBCMD & USBHS_USBCMD_RST) { count++; } print(" reset waited ", count); for (int i=0; i < 64; i++) { periodictable[i] = 1; } qh[0] = ((uint32_t)qh) | 2; qh[1] = 0x0040E000; // addr=0, ep=0 qh[2] = 0x40000000; qh[3] = 0; qh[4] = 1; qh[5] = 1; qh[6] = 0x40; qh[7] = 0; qh[8] = 0; qh[9] = 0; qh[10] = 0; qh[11] = 0; qtd_dummy[0] = 1; qtd_dummy[1] = 1; qtd_dummy[2] = 0x40; // 0x40 = halted qtd_dummy[3] = 0; qtd_dummy[4] = 0; qtd_dummy[5] = 0; qtd_dummy[6] = 0; qtd_dummy[7] = 0; // turn on the USBHS controller USBHS_USBMODE = USBHS_USBMODE_TXHSD(5) | USBHS_USBMODE_CM(3); // host mode USBHS_USBINTR = 0; USBHS_PERIODICLISTBASE = (uint32_t)periodictable; USBHS_FRINDEX = 0; USBHS_ASYNCLISTADDR = (uint32_t)qh; USBHS_USBCMD = USBHS_USBCMD_ITC(0) | USBHS_USBCMD_RS | USBHS_USBCMD_ASP(3) | USBHS_USBCMD_FS2 | USBHS_USBCMD_FS(0) | // periodic table is 64 pointers // USBHS_USBCMD_PSE | USBHS_USBCMD_ASE; USBHS_PORTSC1 |= USBHS_PORTSC_PP; //USBHS_PORTSC1 |= USBHS_PORTSC_PFSC; // force 12 Mbit/sec //USBHS_PORTSC1 |= USBHS_PORTSC_PHCD; // phy off Serial.print("USBHS_ASYNCLISTADDR = "); Serial.println(USBHS_ASYNCLISTADDR, HEX); Serial.print("USBHS_PERIODICLISTBASE = "); Serial.println(USBHS_PERIODICLISTBASE, HEX); Serial.print("periodictable = "); Serial.println((uint32_t)periodictable, HEX); } void port_status() { uint32_t n; Serial.print("Port: "); n = USBHS_PORTSC1; if (n & USBHS_PORTSC_PR) { Serial.print("reset "); } if (n & USBHS_PORTSC_PP) { Serial.print("on "); } else { Serial.print("off "); } if (n & USBHS_PORTSC_PHCD) { Serial.print("phyoff "); } if (n & USBHS_PORTSC_PE) { if (n & USBHS_PORTSC_SUSP) { Serial.print("suspend "); } else { Serial.print("enable "); } } else { Serial.print("disable "); } Serial.print("speed="); switch ((n >> 26) & 3) { case 0: Serial.print("12 Mbps "); break; case 1: Serial.print("1.5 Mbps "); break; case 2: Serial.print("480 Mbps "); break; default: Serial.print("(undef) "); } if (n & USBHS_PORTSC_HSP) { Serial.print("highspeed "); } if (n & USBHS_PORTSC_OCA) { Serial.print("overcurrent "); } if (n & USBHS_PORTSC_CCS) { Serial.print("connected "); } else { Serial.print("not-connected "); } // print info about the EHCI status Serial.print(" run="); Serial.print(USBHS_USBCMD & 1); // running mode Serial.print(",halt="); Serial.print((USBHS_USBSTS >> 12) & 1); // halted mode Serial.print(",err="); Serial.print((USBHS_USBSTS >> 4) & 1); // error encountered! Serial.print(",asyn="); Serial.print((USBHS_USBSTS >> 15) & 1); // running the async schedule Serial.print(",per="); Serial.print((USBHS_USBSTS >> 14) & 1); // running the periodic schedule Serial.print(",index="); Serial.print(USBHS_FRINDEX); // periodic index Serial.println(); if (USBHS_USBSTS & 16) { print_mpu(); USBHS_USBSTS = 16; // clear error } } void read_descriptor(uint16_t value, uint16_t index, uint32_t len) { uint32_t token; if (len > 512) len = 512; Serial.println("Read Device Descriptor..."); qtd_setup[0] = (uint32_t)qtd_in; qtd_setup[1] = 1; qtd_setup[2] = 0x00080E80; qtd_setup[3] = (uint32_t)setupbuf; setupbuf[0] = (value << 16) | (0x06 << 8) | 0x80; setupbuf[1] = (len << 16) | index; qtd_in[0] = (uint32_t)qtd_outack; qtd_in[1] = 1; qtd_in[2] = 0x80000000 | (len << 16) | 0x0D80; qtd_in[3] = (uint32_t)inbuf; qtd_outack[0] = 1; qtd_outack[1] = 1; qtd_outack[2] = 0x80400C80; qtd_outack[3] = 0; // add to QH // Save the content of the token field of the first qTD to be added token = qtd_setup[2]; // Change the token of the first qTD so its Halted bit is set as 1 // and all other bits are zero qtd_setup[2] = 0x40; // copy the content of the first qTD to the dummy qTD memcpy(qtd_dummy, qtd_setup, 32); // Link the first qTD to the last of the qTD of the newly qTD list qtd_outack[0] = (uint32_t)qtd_setup; // Restore the token value to the previous dummy qTD's oken field qtd_dummy[2] = token; // qtd_setup becomes the dummy token... so this only works once! delay(1); Serial.println(qtd_dummy[2], HEX); Serial.println(qtd_in[2], HEX); Serial.println(qtd_outack[2], HEX); Serial.println(qtd_setup[2], HEX); } void loop() { static unsigned int count=0; port_status(); delay(1); count++; if (count == 2) { Serial.println("Plug in device..."); digitalWrite(32, HIGH); // connect device } if (count == 5) { Serial.println("Initiate Reset Sequence..."); USBHS_PORTSC1 |= USBHS_PORTSC_PR; } if (count == 15) { Serial.println("End Reset Sequence..."); USBHS_PORTSC1 &= ~USBHS_PORTSC_PR; } if (count == 22) { read_descriptor(1, 0, 8); // device descriptor } if (count > 5000) { while (1) ; // stop here } } void print(const char *s) { Serial.println(s); delay(10); } void print(const char *s, int num) { Serial.print(s); Serial.println(num); delay(10); } void print_mpu() { Serial.print("MPU: CESR="); Serial.println(MPU_CESR, HEX); }