/* USB EHCI Host for Teensy 3.6 * Copyright 2017 Paul Stoffregen (paul@pjrc.com) * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include #include "USBHost_t36.h" // Read this header first for key info // This HID driver claims a USB interface and parses its incoming // data (reports). It doesn't actually use the data, but it allows // drivers which inherit the USBHIDInput base class to claim the // top level collections within the reports. Those drivers get // callbacks with the arriving data full decoded to data/usage // pairs. #define print USBHost::print_ #define println USBHost::println_ void USBHIDParser::init() { contribute_Pipes(mypipes, sizeof(mypipes)/sizeof(Pipe_t)); contribute_Transfers(mytransfers, sizeof(mytransfers)/sizeof(Transfer_t)); contribute_String_Buffers(mystring_bufs, sizeof(mystring_bufs)/sizeof(strbuf_t)); driver_ready_for_device(this); } bool USBHIDParser::claim(Device_t *dev, int type, const uint8_t *descriptors, uint32_t len) { println("HIDParser claim this=", (uint32_t)this, HEX); // only claim at interface level if (type != 1) return false; if (len < 9+9+7) return false; // interface descriptor uint32_t numendpoint = descriptors[4]; if (numendpoint < 1 || numendpoint > 2) return false; if (descriptors[5] != 3) return false; // bInterfaceClass, 3 = HID println(" bInterfaceClass = ", descriptors[5]); println(" bInterfaceSubClass = ", descriptors[6]); println(" bInterfaceProtocol = ", descriptors[7]); // do not claim boot protocol keyboards if (descriptors[6] == 1 && descriptors[7] == 1) return false; print("HID Parser Claim: "); print_hexbytes(descriptors, len); // hid interface descriptor uint32_t hidlen = descriptors[9]; if (hidlen < 9) return false; if (descriptors[10] != 33) return false; // descriptor type, 33=HID if (descriptors[14] < 1) return false; // must be at least 1 extra descriptor if (hidlen != (uint32_t)(6 + descriptors[14] * 3)) return false; // must be correct size if (9 + hidlen > len) return false; uint32_t i=0; while (1) { if (descriptors[15 + i * 3] == 34) { // found HID report descriptor descsize = descriptors[16 + i * 3] | (descriptors[17 + i * 3] << 8); println("report descriptor size = ", descsize); break; } i++; if (i >= descriptors[14]) return false; } if (descsize > sizeof(descriptor)) return false; // can't fit the report descriptor // endpoint descriptor(s) uint32_t offset = 9 + hidlen; if (len < offset + numendpoint * 7) return false; // not enough data if (numendpoint == 1) { println("Single endpoint HID:"); if (descriptors[offset] != 7) return false; if (descriptors[offset+1] != 5) return false; // endpoint descriptor if (descriptors[offset+3] != 3) return false; // must be interrupt type uint32_t endpoint = descriptors[offset+2]; uint32_t size = descriptors[offset+4] | (descriptors[offset+5] << 8); uint32_t interval = descriptors[offset+6]; println(" endpoint = ", endpoint, HEX); println(" size = ", size); println(" interval = ", interval); if ((endpoint & 0x0F) == 0) return false; if ((endpoint & 0xF0) != 0x80) return false; // must be IN direction in_pipe = new_Pipe(dev, 3, endpoint & 0x0F, 1, size, interval); out_pipe = NULL; in_size = size; } else { println("Two endpoint HID:"); if (descriptors[offset] != 7) return false; if (descriptors[offset+1] != 5) return false; // endpoint descriptor if (descriptors[offset+3] != 3) return false; // must be interrupt type uint32_t endpoint1 = descriptors[offset+2]; uint32_t size1 = descriptors[offset+4] | (descriptors[offset+5] << 8); uint32_t interval1 = descriptors[offset+6]; println(" endpoint = ", endpoint1, HEX); println(" size = ", size1); println(" interval = ", interval1); if ((endpoint1 & 0x0F) == 0) return false; if (descriptors[offset+7] != 7) return false; if (descriptors[offset+8] != 5) return false; // endpoint descriptor if (descriptors[offset+10] != 3) return false; // must be interrupt type uint32_t endpoint2 = descriptors[offset+9]; uint32_t size2 = descriptors[offset+11] | (descriptors[offset+12] << 8); uint32_t interval2 = descriptors[offset+13]; println(" endpoint = ", endpoint2, HEX); println(" size = ", size2); println(" interval = ", interval2); if ((endpoint2 & 0x0F) == 0) return false; if (((endpoint1 & 0xF0) == 0x80) && ((endpoint2 & 0xF0) == 0)) { // first endpoint is IN, second endpoint is OUT in_pipe = new_Pipe(dev, 3, endpoint1 & 0x0F, 1, size1, interval1); out_pipe = new_Pipe(dev, 3, endpoint2, 0, size2, interval2); in_size = size1; out_size = size2; } else if (((endpoint1 & 0xF0) == 0) && ((endpoint2 & 0xF0) == 0x80)) { // first endpoint is OUT, second endpoint is IN in_pipe = new_Pipe(dev, 3, endpoint2 & 0x0F, 1, size2, interval2); out_pipe = new_Pipe(dev, 3, endpoint1, 0, size1, interval1); in_size = size2; out_size = size1; } else { return false; } out_pipe->callback_function = out_callback; } in_pipe->callback_function = in_callback; for (uint32_t i=0; i < TOPUSAGE_LIST_LEN; i++) { //topusage_list[i] = 0; topusage_drivers[i] = NULL; } // request the HID report descriptor mk_setup(setup, 0x81, 6, 0x2200, descriptors[2], descsize); // get report desc queue_Control_Transfer(dev, &setup, descriptor, this); return true; } void USBHIDParser::control(const Transfer_t *transfer) { println("control callback (hid)"); print_hexbytes(transfer->buffer, transfer->length); // To decode hex dump to human readable HID report summary: // http://eleccelerator.com/usbdescreqparser/ uint32_t mesg = transfer->setup.word1; println(" mesg = ", mesg, HEX); if (mesg == 0x22000681 && transfer->length == descsize) { // HID report descriptor println(" got report descriptor"); parse(); queue_Data_Transfer(in_pipe, report, in_size, this); if (device->idVendor == 0x054C && device->idProduct == 0x0268) { println("send special PS3 feature command"); mk_setup(setup, 0x21, 9, 0x03F4, 0, 4); // ps3 tell to send report 1? static uint8_t ps3_feature_F4_report[] = {0x42, 0x0c, 0x00, 0x00}; queue_Control_Transfer(device, &setup, ps3_feature_F4_report, this); } } } void USBHIDParser::in_callback(const Transfer_t *transfer) { if (transfer->driver) { ((USBHIDParser*)(transfer->driver))->in_data(transfer); } } void USBHIDParser::out_callback(const Transfer_t *transfer) { //println("USBHIDParser:: out_callback (static)"); if (transfer->driver) { ((USBHIDParser*)(transfer->driver))->out_data(transfer); } } // When the device goes away, we need to call disconnect_collection() // for all drivers which claimed a top level collection void USBHIDParser::disconnect() { for (uint32_t i=0; i < TOPUSAGE_LIST_LEN; i++) { USBHIDInput *driver = topusage_drivers[i]; if (driver) { driver->disconnect_collection(device); topusage_drivers[i] = NULL; } } } // Called when the HID device sends a report void USBHIDParser::in_data(const Transfer_t *transfer) { /*Serial.printf("HID: "); uint8_t *pb = (uint8_t*)transfer->buffer; for (uint8_t i = 0; i < transfer->length; i++) { Serial.printf("%x ",pb[i]); } Serial.printf("\n"); */ print("HID: "); print(use_report_id); print(" - "); print_hexbytes(transfer->buffer, transfer->length); const uint8_t *buf = (const uint8_t *)transfer->buffer; uint32_t len = transfer->length; // See if the first top report wishes to bypass the // parse... if (!(topusage_drivers[0] && topusage_drivers[0]->hid_process_in_data(transfer))) { if (use_report_id == false) { parse(0x0100, buf, len); } else { if (len > 1) { parse(0x0100 | buf[0], buf + 1, len - 1); } } } queue_Data_Transfer(in_pipe, report, in_size, this); } void USBHIDParser::out_data(const Transfer_t *transfer) { println("USBHIDParser:out_data called (instance)"); // A packet completed. lets mark it as done and call back // to top reports handler. We unmark our checkmark to // handle case where they may want to queue up another one. if (transfer->buffer == tx1) txstate &= ~1; if (transfer->buffer == tx2) txstate &= ~2; if (topusage_drivers[0]) { topusage_drivers[0]->hid_process_out_data(transfer); } } bool USBHIDParser::sendPacket(const uint8_t *buffer, int cb) { if (!out_size || !out_pipe) return false; if (!tx1) { // Was not init before, for now lets put it at end of descriptor // TODO: should verify that either don't exceed overlap descsize // Or that we have taken over this device tx1 = &descriptor[sizeof(descriptor) - out_size]; tx2 = tx1 - out_size; } if ((txstate & 3) == 3) return false; // both transmit buffers are full if (cb == -1) cb = out_size; uint8_t *p = tx1; if ((txstate & 1) == 0) { txstate |= 1; } else { if (!tx2) return false; // only one buffer txstate |= 2; p = tx2; } // copy the users data into our out going buffer memcpy(p, buffer, cb); println("USBHIDParser Send packet"); print_hexbytes(buffer, cb); queue_Data_Transfer(out_pipe, p, cb, this); println(" Queue_data transfer returned"); return true; } void USBHIDParser::setTXBuffers(uint8_t *buffer1, uint8_t *buffer2, uint8_t cb) { tx1 = buffer1; tx2 = buffer2; } bool USBHIDParser::sendControlPacket(uint32_t bmRequestType, uint32_t bRequest, uint32_t wValue, uint32_t wIndex, uint32_t wLength, void *buf) { // Use setup structure to build packet mk_setup(setup, bmRequestType, bRequest, wValue, wIndex, wLength); // ps3 tell to send report 1? return queue_Control_Transfer(device, &setup, buf, this); } // This no-inputs parse is meant to be used when we first get the // HID report descriptor. It finds all the top level collections // and allows drivers to claim them. This is always where we // learn whether the reports will or will not use a Report ID byte. void USBHIDParser::parse() { const uint8_t *p = descriptor; const uint8_t *end = p + descsize; uint16_t usage_page = 0; uint16_t usage = 0; uint8_t collection_level = 0; uint8_t topusage_count = 0; use_report_id = false; while (p < end) { uint8_t tag = *p; if (tag == 0xFE) { // Long Item p += *p + 3; continue; } uint32_t val; switch (tag & 0x03) { // Short Item data case 0: val = 0; p++; break; case 1: val = p[1]; p += 2; break; case 2: val = p[1] | (p[2] << 8); p += 3; break; case 3: val = p[1] | (p[2] << 8) | (p[3] << 16) | (p[4] << 24); p += 5; break; } if (p > end) break; switch (tag & 0xFC) { case 0x84: // Report ID (global) use_report_id = true; break; case 0x04: // Usage Page (global) usage_page = val; break; case 0x08: // Usage (local) usage = val; break; case 0xA0: // Collection if (collection_level == 0 && topusage_count < TOPUSAGE_LIST_LEN) { uint32_t topusage = ((uint32_t)usage_page << 16) | usage; println("Found top level collection ", topusage, HEX); //topusage_list[topusage_count] = topusage; topusage_drivers[topusage_count] = find_driver(topusage); topusage_count++; } collection_level++; usage = 0; break; case 0xC0: // End Collection if (collection_level > 0) { collection_level--; } case 0x80: // Input case 0x90: // Output case 0xB0: // Feature usage = 0; break; } } while (topusage_count < TOPUSAGE_LIST_LEN) { //topusage_list[topusage_count] = 0; topusage_drivers[topusage_count] = NULL; topusage_count++; } } // This is a list of all the drivers inherited from the USBHIDInput class. // Unlike the list of USBDriver (managed in enumeration.cpp), drivers stay // on this list even when they have claimed a top level collection. USBHIDInput * USBHIDParser::available_hid_drivers_list = NULL; void USBHIDParser::driver_ready_for_hid_collection(USBHIDInput *driver) { driver->next = NULL; if (available_hid_drivers_list == NULL) { available_hid_drivers_list = driver; } else { USBHIDInput *last = available_hid_drivers_list; while (last->next) last = last->next; last->next = driver; } } // When a new top level collection is found, this function asks drivers // if they wish to claim it. The driver taking ownership of the // collection is returned, or NULL if no driver wants it. USBHIDInput * USBHIDParser::find_driver(uint32_t topusage) { println("find_driver"); USBHIDInput *driver = available_hid_drivers_list; hidclaim_t claim_type; while (driver) { println(" driver ", (uint32_t)driver, HEX); if ((claim_type = driver->claim_collection(this, device, topusage)) != CLAIM_NO) { if (claim_type == CLAIM_INTERFACE) hid_driver_claimed_control_ = true; return driver; } driver = driver->next; } return NULL; } // Extract 1 to 32 bits from the data array, starting at bitindex. static uint32_t bitfield(const uint8_t *data, uint32_t bitindex, uint32_t numbits) { uint32_t output = 0; uint32_t bitcount = 0; data += (bitindex >> 3); uint32_t offset = bitindex & 7; if (offset) { output = (*data++) >> offset; bitcount = 8 - offset; } while (bitcount < numbits) { output |= (uint32_t)(*data++) << bitcount; bitcount += 8; } if (bitcount > numbits && numbits < 32) { output &= ((1 << numbits) - 1); } return output; } // convert a number with the specified number of bits from unsigned to signed, // so the result is a proper 32 bit signed integer. static int32_t signext(uint32_t num, uint32_t bitcount) { if (bitcount < 32 && bitcount > 0 && (num & (1 << (bitcount-1)))) { num |= ~((1 << bitcount) - 1); } return (int32_t)num; } // convert a tag's value to a signed integer. static int32_t signedval(uint32_t num, uint8_t tag) { tag &= 3; if (tag == 1) return (int8_t)num; if (tag == 2) return (int16_t)num; return (int32_t)num; } // parse the report descriptor and use it to feed the fields of the report // to the drivers which have claimed its top level collections void USBHIDParser::parse(uint16_t type_and_report_id, const uint8_t *data, uint32_t len) { const uint8_t *p = descriptor; const uint8_t *end = p + descsize; USBHIDInput *driver = NULL; uint32_t topusage = 0; uint8_t topusage_index = 0; uint8_t collection_level = 0; uint16_t usage[USAGE_LIST_LEN] = {0, 0}; uint8_t usage_count = 0; uint8_t report_id = 0; uint16_t report_size = 0; uint16_t report_count = 0; uint16_t usage_page = 0; uint32_t last_usage = 0; int32_t logical_min = 0; int32_t logical_max = 0; uint32_t bitindex = 0; while (p < end) { uint8_t tag = *p; if (tag == 0xFE) { // Long Item (unsupported) p += p[1] + 3; continue; } uint32_t val; switch (tag & 0x03) { // Short Item data case 0: val = 0; p++; break; case 1: val = p[1]; p += 2; break; case 2: val = p[1] | (p[2] << 8); p += 3; break; case 3: val = p[1] | (p[2] << 8) | (p[3] << 16) | (p[4] << 24); p += 5; break; } if (p > end) break; bool reset_local = false; switch (tag & 0xFC) { case 0x04: // Usage Page (global) usage_page = val; break; case 0x14: // Logical Minimum (global) logical_min = signedval(val, tag); break; case 0x24: // Logical Maximum (global) logical_max = signedval(val, tag); break; case 0x74: // Report Size (global) report_size = val; break; case 0x94: // Report Count (global) report_count = val; break; case 0x84: // Report ID (global) report_id = val; break; case 0x08: // Usage (local) if (usage_count < USAGE_LIST_LEN) { // Usages: 0 is reserved 0x1-0x1f is sort of reserved for top level things like // 0x1 - Pointer - A collection... So lets try ignoring these if (val > 0x1f) { usage[usage_count++] = val; } } break; case 0x18: // Usage Minimum (local) usage[0] = val; usage_count = 255; break; case 0x28: // Usage Maximum (local) usage[1] = val; usage_count = 255; break; case 0xA0: // Collection if (collection_level == 0) { topusage = ((uint32_t)usage_page << 16) | usage[0]; driver = NULL; if (topusage_index < TOPUSAGE_LIST_LEN) { driver = topusage_drivers[topusage_index++]; } } // discard collection info if not top level, hopefully that's ok? collection_level++; reset_local = true; break; case 0xC0: // End Collection if (collection_level > 0) { collection_level--; if (collection_level == 0 && driver != NULL) { driver->hid_input_end(); driver = NULL; } } reset_local = true; break; case 0x80: // Input if (use_report_id && (report_id != (type_and_report_id & 0xFF))) { // completely ignore and do not advance bitindex // for descriptors of other report IDs reset_local = true; break; } if ((val & 1) || (driver == NULL)) { // skip past constant fields or when no driver is listening bitindex += report_count * report_size; } else { println("begin, usage=", topusage, HEX); println(" type= ", val, HEX); println(" min= ", logical_min); println(" max= ", logical_max); println(" reportcount=", report_count); println(" usage count=", usage_count); driver->hid_input_begin(topusage, val, logical_min, logical_max); println("Input, total bits=", report_count * report_size); if ((val & 2)) { // ordinary variable format uint32_t uindex = 0; uint32_t uindex_max = 0xffff; // assume no MAX bool uminmax = false; if (usage_count > USAGE_LIST_LEN) { // usage numbers by min/max, not from list uindex = usage[0]; uindex_max = usage[1]; uminmax = true; } else if ((report_count > 1) && (usage_count <= 1)) { // Special cases: Either only one or no usages specified and there are more than one // report counts . if (usage_count == 1) { uindex = usage[0]; } else { // BUGBUG:: Not sure good place to start? maybe round up from last usage to next higher group up of 0x100? uindex = (last_usage & 0xff00) + 0x100; } uminmax = true; } //Serial.printf("TU:%x US:%x %x %d %d: C:%d, %d, MM:%d, %x %x\n", topusage, usage_page, val, logical_min, logical_max, // report_count, usage_count, uminmax, usage[0], usage[1]); for (uint32_t i=0; i < report_count; i++) { uint32_t u; if (uminmax) { u = uindex; if (uindex < uindex_max) uindex++; } else { u = usage[uindex++]; if (uindex >= USAGE_LIST_LEN-1) { uindex = USAGE_LIST_LEN-1; } } last_usage = u; // remember the last one we used... u |= (uint32_t)usage_page << 16; print(" usage = ", u, HEX); uint32_t n = bitfield(data, bitindex, report_size); if (logical_min >= 0) { println(" data = ", n); driver->hid_input_data(u, n); } else { int32_t sn = signext(n, report_size); println(" sdata = ", sn); driver->hid_input_data(u, sn); } bitindex += report_size; } } else { // array format, each item is a usage number for (uint32_t i=0; i < report_count; i++) { uint32_t u = bitfield(data, bitindex, report_size); int n = u; if (n >= logical_min && n <= logical_max) { u |= (uint32_t)usage_page << 16; print(" usage = ", u, HEX); println(" data = 1"); driver->hid_input_data(u, 1); } else { print (" usage =", u, HEX); print(" out of range: ", logical_min, HEX); println(" ", logical_max, HEX); } bitindex += report_size; } } } reset_local = true; break; case 0x90: // Output // TODO..... reset_local = true; break; case 0xB0: // Feature // TODO..... reset_local = true; break; case 0x34: // Physical Minimum (global) case 0x44: // Physical Maximum (global) case 0x54: // Unit Exponent (global) case 0x64: // Unit (global) break; // Ignore these commonly used tags. Hopefully not needed? case 0xA4: // Push (yikes! Hope nobody really uses this?!) case 0xB4: // Pop (yikes! Hope nobody really uses this?!) case 0x38: // Designator Index (local) case 0x48: // Designator Minimum (local) case 0x58: // Designator Maximum (local) case 0x78: // String Index (local) case 0x88: // String Minimum (local) case 0x98: // String Maximum (local) case 0xA8: // Delimiter (local) default: println("Ruh Roh, unsupported tag, not a good thing Scoob ", tag, HEX); break; } if (reset_local) { usage_count = 0; usage[0] = 0; usage[1] = 0; } } }