1
0
mirror of https://github.com/gdsports/USBHost_t36 synced 2024-11-24 01:52:23 -05:00

Add MIDI InputFunctions example

This commit is contained in:
PaulStoffregen 2018-01-11 19:02:47 -08:00
parent d169a1a387
commit f59f8a16ef

View File

@ -0,0 +1,250 @@
/* Receive Incoming USB Host MIDI using functions. As usbMIDI
reads incoming messages, handler functions are run.
See the InputRead example for the non-function alterative.
This very long example demonstrates all possible handler
functions. Most applications need only some of these.
This example is meant to allow easy copy-and-paste of the
desired functions.
Use the Arduino Serial Monitor to view the messages
as Teensy receives them by USB MIDI
You must select MIDI from the "Tools > USB Type" menu
This example code is in the public domain.
*/
#include <USBHost_t36.h>
USBHost myusb;
USBHub hub1(myusb);
USBHub hub2(myusb);
MIDIDevice midi1(myusb);
void setup() {
Serial.begin(115200);
// Wait 1.5 seconds before turning on USB Host. If connected USB devices
// use too much power, Teensy at least completes USB enumeration, which
// makes isolating the power issue easier.
delay(1500);
Serial.println("USB Host InputFunctions example");
delay(10);
myusb.begin();
midi1.setHandleNoteOn(myNoteOn);
midi1.setHandleNoteOff(myNoteOff);
midi1.setHandleAfterTouchPoly(myAfterTouchPoly);
midi1.setHandleControlChange(myControlChange);
midi1.setHandleProgramChange(myProgramChange);
midi1.setHandleAfterTouchChannel(myAfterTouchChannel);
midi1.setHandlePitchChange(myPitchChange);
// Only one of these System Exclusive handlers will actually be
// used. See the comments below for the difference between them.
midi1.setHandleSystemExclusive(mySystemExclusiveChunk);
midi1.setHandleSystemExclusive(mySystemExclusive);
midi1.setHandleTimeCodeQuarterFrame(myTimeCodeQuarterFrame);
midi1.setHandleSongPosition(mySongPosition);
midi1.setHandleSongSelect(mySongSelect);
midi1.setHandleTuneRequest(myTuneRequest);
midi1.setHandleClock(myClock);
midi1.setHandleStart(myStart);
midi1.setHandleContinue(myContinue);
midi1.setHandleStop(myStop);
midi1.setHandleActiveSensing(myActiveSensing);
midi1.setHandleSystemReset(mySystemReset);
// This generic System Real Time handler is only used if the
// more specific ones are not set.
midi1.setHandleRealTimeSystem(myRealTimeSystem);
}
void loop() {
// The handler functions are called when midi1 reads data. They
// will not be called automatically. You must call midi1.read()
// regularly from loop() for midi1 to actually read incoming
// data and run the handler functions as messages arrive.
myusb.Task();
midi1.read();
}
void myNoteOn(byte channel, byte note, byte velocity) {
// When a USB device with multiple virtual cables is used,
// midi1.getCable() can be used to read which of the virtual
// MIDI cables received this message.
Serial.print("Note On, ch=");
Serial.print(channel, DEC);
Serial.print(", note=");
Serial.print(note, DEC);
Serial.print(", velocity=");
Serial.println(velocity, DEC);
}
void myNoteOff(byte channel, byte note, byte velocity) {
Serial.print("Note Off, ch=");
Serial.print(channel, DEC);
Serial.print(", note=");
Serial.print(note, DEC);
Serial.print(", velocity=");
Serial.println(velocity, DEC);
}
void myAfterTouchPoly(byte channel, byte note, byte velocity) {
Serial.print("AfterTouch Change, ch=");
Serial.print(channel, DEC);
Serial.print(", note=");
Serial.print(note, DEC);
Serial.print(", velocity=");
Serial.println(velocity, DEC);
}
void myControlChange(byte channel, byte control, byte value) {
Serial.print("Control Change, ch=");
Serial.print(channel, DEC);
Serial.print(", control=");
Serial.print(control, DEC);
Serial.print(", value=");
Serial.println(value, DEC);
}
void myProgramChange(byte channel, byte program) {
Serial.print("Program Change, ch=");
Serial.print(channel, DEC);
Serial.print(", program=");
Serial.println(program, DEC);
}
void myAfterTouchChannel(byte channel, byte pressure) {
Serial.print("After Touch, ch=");
Serial.print(channel, DEC);
Serial.print(", pressure=");
Serial.println(pressure, DEC);
}
void myPitchChange(byte channel, int pitch) {
Serial.print("Pitch Change, ch=");
Serial.print(channel, DEC);
Serial.print(", pitch=");
Serial.println(pitch, DEC);
}
// This 3-input System Exclusive function is more complex, but allows you to
// process very large messages which do not fully fit within the midi1's
// internal buffer. Large messages are given to you in chunks, with the
// 3rd parameter to tell you which is the last chunk. This function is
// a Teensy extension, not available in the Arduino MIDI library.
//
void mySystemExclusiveChunk(const byte *data, uint16_t length, bool last) {
Serial.print("SysEx Message: ");
printBytes(data, length);
if (last) {
Serial.println(" (end)");
} else {
Serial.println(" (to be continued)");
}
}
// This simpler 2-input System Exclusive function can only receive messages
// up to the size of the internal buffer. Larger messages are truncated, with
// no way to receive the data which did not fit in the buffer. If both types
// of SysEx functions are set, the 3-input version will be called by midi1.
//
void mySystemExclusive(byte *data, unsigned int length) {
Serial.print("SysEx Message: ");
printBytes(data, length);
Serial.println();
}
void myTimeCodeQuarterFrame(byte data) {
static char SMPTE[8]={'0','0','0','0','0','0','0','0'};
static byte fps=0;
byte index = data >> 4;
byte number = data & 15;
if (index == 7) {
fps = (number >> 1) & 3;
number = number & 1;
}
if (index < 8 || number < 10) {
SMPTE[index] = number + '0';
Serial.print("TimeCode: "); // perhaps only print when index == 7
Serial.print(SMPTE[7]);
Serial.print(SMPTE[6]);
Serial.print(':');
Serial.print(SMPTE[5]);
Serial.print(SMPTE[4]);
Serial.print(':');
Serial.print(SMPTE[3]);
Serial.print(SMPTE[2]);
Serial.print('.');
Serial.print(SMPTE[1]); // perhaps add 2 to compensate for MIDI latency?
Serial.print(SMPTE[0]);
switch (fps) {
case 0: Serial.println(" 24 fps"); break;
case 1: Serial.println(" 25 fps"); break;
case 2: Serial.println(" 29.97 fps"); break;
case 3: Serial.println(" 30 fps"); break;
}
} else {
Serial.print("TimeCode: invalid data = ");
Serial.println(data, HEX);
}
}
void mySongPosition(uint16_t beats) {
Serial.print("Song Position, beat=");
Serial.println(beats);
}
void mySongSelect(byte songNumber) {
Serial.print("Song Select, song=");
Serial.println(songNumber, DEC);
}
void myTuneRequest() {
Serial.println("Tune Request");
}
void myClock() {
Serial.println("Clock");
}
void myStart() {
Serial.println("Start");
}
void myContinue() {
Serial.println("Continue");
}
void myStop() {
Serial.println("Stop");
}
void myActiveSensing() {
Serial.println("Actvice Sensing");
}
void mySystemReset() {
Serial.println("System Reset");
}
void myRealTimeSystem(uint8_t realtimebyte) {
Serial.print("Real Time Message, code=");
Serial.println(realtimebyte, HEX);
}
void printBytes(const byte *data, unsigned int size) {
while (size > 0) {
byte b = *data++;
if (b < 16) Serial.print('0');
Serial.print(b, HEX);
if (size > 1) Serial.print(' ');
size = size - 1;
}
}