1
0
mirror of https://github.com/gdsports/USBHost_t36 synced 2024-11-27 19:42:15 -05:00

Group code into cpp files

This commit is contained in:
PaulStoffregen 2017-02-11 02:30:52 -08:00
parent f1c0481d89
commit 2a2f745dc1
6 changed files with 1109 additions and 944 deletions

View File

@ -106,6 +106,28 @@ struct Transfer_struct {
uint32_t unused[3];
};
void begin();
Pipe_t * new_Pipe(Device_t *dev, uint32_t type, uint32_t endpoint, uint32_t direction,
uint32_t max_packet_len);
bool new_Transfer(Pipe_t *pipe, void *buffer, uint32_t len);
bool followup_Transfer(Transfer_t *transfer);
void add_to_async_followup_list(Transfer_t *first, Transfer_t *last);
void remove_from_async_followup_list(Transfer_t *transfer);
void add_to_periodic_followup_list(Transfer_t *first, Transfer_t *last);
void remove_from_periodic_followup_list(Transfer_t *transfer);
Device_t * new_Device(uint32_t speed, uint32_t hub_addr, uint32_t hub_port);
void enumeration(const Transfer_t *transfer);
void mk_setup(setup_t &s, uint32_t bmRequestType, uint32_t bRequest,
uint32_t wValue, uint32_t wIndex, uint32_t wLength);
uint32_t assign_addr(void);
void pipe_set_maxlen(Pipe_t *pipe, uint32_t maxlen);
void pipe_set_addr(Pipe_t *pipe, uint32_t addr);
uint32_t pipe_get_addr(Pipe_t *pipe);
void init_Device_Pipe_Transfer_memory(void);
Device_t * allocate_Device(void);
void free_Device(Device_t *q);
@ -114,7 +136,30 @@ void free_Pipe(Pipe_t *q);
Transfer_t * allocate_Transfer(void);
void free_Transfer(Transfer_t *q);
class USBHostDriver {
void print(const Transfer_t *transfer);
void print(const Transfer_t *first, const Transfer_t *last);
void print_token(uint32_t token);
void print(const Pipe_t *pipe);
void print_hexbytes(const void *ptr, uint32_t len);
void print(const char *s);
void print(const char *s, int num);
class USBHost {
public:
static void begin();
protected:
static void enumeration(const Transfer_t *transfer);
static void isr();
};
class USBHostDriver : public USBHost {
public:
virtual bool claim_device(Device_t *device) {
return false;
@ -125,6 +170,7 @@ public:
virtual void disconnect() {
}
USBHostDriver *next;
};
class USBHub : public USBHostDriver {

581
ehci.cpp Normal file
View File

@ -0,0 +1,581 @@
/* USB EHCI Host for Teensy 3.6
* Copyright 2017 Paul Stoffregen (paul@pjrc.com)
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <Arduino.h>
#include "USBHost.h"
uint32_t periodictable[32] __attribute__ ((aligned(4096), used));
uint8_t port_state;
#define PORT_STATE_DISCONNECTED 0
#define PORT_STATE_DEBOUNCE 1
#define PORT_STATE_RESET 2
#define PORT_STATE_RECOVERY 3
#define PORT_STATE_ACTIVE 4
Device_t *rootdev=NULL;
Transfer_t *async_followup_first=NULL;
Transfer_t *async_followup_last=NULL;
Transfer_t *periodic_followup_first=NULL;
Transfer_t *periodic_followup_last=NULL;
void begin()
{
// Teensy 3.6 has USB host power controlled by PTE6
PORTE_PCR6 = PORT_PCR_MUX(1);
GPIOE_PDDR |= (1<<6);
GPIOE_PSOR = (1<<6); // turn on USB host power
Serial.print("sizeof Device = ");
Serial.println(sizeof(Device_t));
Serial.print("sizeof Pipe = ");
Serial.println(sizeof(Pipe_t));
Serial.print("sizeof Transfer = ");
Serial.println(sizeof(Transfer_t));
// configure the MPU to allow USBHS DMA to access memory
MPU_RGDAAC0 |= 0x30000000;
Serial.print("MPU_RGDAAC0 = ");
Serial.println(MPU_RGDAAC0, HEX);
// turn on clocks
MCG_C1 |= MCG_C1_IRCLKEN; // enable MCGIRCLK 32kHz
OSC0_CR |= OSC_ERCLKEN;
SIM_SOPT2 |= SIM_SOPT2_USBREGEN; // turn on USB regulator
SIM_SOPT2 &= ~SIM_SOPT2_USBSLSRC; // use IRC for slow clock
print("power up USBHS PHY");
SIM_USBPHYCTL |= SIM_USBPHYCTL_USBDISILIM; // disable USB current limit
//SIM_USBPHYCTL = SIM_USBPHYCTL_USBDISILIM | SIM_USBPHYCTL_USB3VOUTTRG(6); // pg 237
SIM_SCGC3 |= SIM_SCGC3_USBHSDCD | SIM_SCGC3_USBHSPHY | SIM_SCGC3_USBHS;
USBHSDCD_CLOCK = 33 << 2;
print("init USBHS PHY & PLL");
// init process: page 1681-1682
USBPHY_CTRL_CLR = (USBPHY_CTRL_SFTRST | USBPHY_CTRL_CLKGATE); // // CTRL pg 1698
USBPHY_CTRL_SET = USBPHY_CTRL_ENUTMILEVEL2 | USBPHY_CTRL_ENUTMILEVEL3;
//USBPHY_CTRL_SET = USBPHY_CTRL_FSDLL_RST_EN; // TODO: what does this do??
USBPHY_TRIM_OVERRIDE_EN_SET = 1;
USBPHY_PLL_SIC = USBPHY_PLL_SIC_PLL_POWER | USBPHY_PLL_SIC_PLL_ENABLE |
USBPHY_PLL_SIC_PLL_DIV_SEL(1) | USBPHY_PLL_SIC_PLL_EN_USB_CLKS;
// wait for the PLL to lock
int count=0;
while ((USBPHY_PLL_SIC & USBPHY_PLL_SIC_PLL_LOCK) == 0) {
count++;
}
Serial.print("PLL locked, waited ");
Serial.println(count);
// turn on power to PHY
USBPHY_PWD = 0;
delay(10);
// sanity check, connect 470K pullup & 100K pulldown and watch D+ voltage change
//USBPHY_ANACTRL_CLR = (1<<10); // turn off both 15K pulldowns... works! :)
// sanity check, output clocks on pin 9 for testing
//SIM_SOPT2 = SIM_SOPT2 & (~SIM_SOPT2_CLKOUTSEL(7)) | SIM_SOPT2_CLKOUTSEL(3); // LPO 1kHz
//SIM_SOPT2 = SIM_SOPT2 & (~SIM_SOPT2_CLKOUTSEL(7)) | SIM_SOPT2_CLKOUTSEL(2); // Flash
//SIM_SOPT2 = SIM_SOPT2 & (~SIM_SOPT2_CLKOUTSEL(7)) | SIM_SOPT2_CLKOUTSEL(6); // XTAL
//SIM_SOPT2 = SIM_SOPT2 & (~SIM_SOPT2_CLKOUTSEL(7)) | SIM_SOPT2_CLKOUTSEL(7); // IRC 48MHz
//SIM_SOPT2 = SIM_SOPT2 & (~SIM_SOPT2_CLKOUTSEL(7)) | SIM_SOPT2_CLKOUTSEL(4); // MCGIRCLK
//CORE_PIN9_CONFIG = PORT_PCR_MUX(5); // CLKOUT on PTC3 Alt5 (Arduino pin 9)
// now with the PHY up and running, start up USBHS
print("begin ehci reset");
USBHS_USBCMD |= USBHS_USBCMD_RST;
count = 0;
while (USBHS_USBCMD & USBHS_USBCMD_RST) {
count++;
}
print(" reset waited ", count);
init_Device_Pipe_Transfer_memory();
for (int i=0; i < 32; i++) {
periodictable[i] = 1;
}
port_state = PORT_STATE_DISCONNECTED;
USBHS_USB_SBUSCFG = 1; // System Bus Interface Configuration
// turn on the USBHS controller
//USBHS_USBMODE = USBHS_USBMODE_TXHSD(5) | USBHS_USBMODE_CM(3); // host mode
USBHS_USBMODE = USBHS_USBMODE_CM(3); // host mode
USBHS_USBINTR = 0;
USBHS_PERIODICLISTBASE = (uint32_t)periodictable;
USBHS_FRINDEX = 0;
USBHS_ASYNCLISTADDR = 0;
USBHS_USBCMD = USBHS_USBCMD_ITC(8) | USBHS_USBCMD_RS |
USBHS_USBCMD_ASP(3) | USBHS_USBCMD_ASPE |
USBHS_USBCMD_FS2 | USBHS_USBCMD_FS(1); // periodic table is 32 pointers
// turn on the USB port
//USBHS_PORTSC1 = USBHS_PORTSC_PP;
USBHS_PORTSC1 |= USBHS_PORTSC_PP;
//USBHS_PORTSC1 |= USBHS_PORTSC_PFSC; // force 12 Mbit/sec
//USBHS_PORTSC1 |= USBHS_PORTSC_PHCD; // phy off
Serial.print("USBHS_ASYNCLISTADDR = ");
Serial.println(USBHS_ASYNCLISTADDR, HEX);
Serial.print("USBHS_PERIODICLISTBASE = ");
Serial.println(USBHS_PERIODICLISTBASE, HEX);
Serial.print("periodictable = ");
Serial.println((uint32_t)periodictable, HEX);
// enable interrupts, after this point interruts to all the work
NVIC_ENABLE_IRQ(IRQ_USBHS);
USBHS_USBINTR = USBHS_USBINTR_PCE | USBHS_USBINTR_TIE0;
USBHS_USBINTR |= USBHS_USBINTR_UEE | USBHS_USBINTR_SEE;
USBHS_USBINTR |= USBHS_USBINTR_AAE;
USBHS_USBINTR |= USBHS_USBINTR_UPIE | USBHS_USBINTR_UAIE;
}
// EHCI registers page default
// -------------- ---- -------
// USBHS_USBCMD 1599 00080000 USB Command
// USBHS_USBSTS 1602 00000000 USB Status
// USBHS_USBINTR 1606 00000000 USB Interrupt Enable
// USBHS_FRINDEX 1609 00000000 Frame Index Register
// USBHS_PERIODICLISTBASE 1610 undefine Periodic Frame List Base Address
// USBHS_ASYNCLISTADDR 1612 undefine Asynchronous List Address
// USBHS_PORTSC1 1619 00002000 Port Status and Control
// USBHS_USBMODE 1629 00005000 USB Mode
// USBHS_GPTIMERnCTL 1591 00000000 General Purpose Timer n Control
// PORT_STATE_DISCONNECTED 0
// PORT_STATE_DEBOUNCE 1
// PORT_STATE_RESET 2
// PORT_STATE_RECOVERY 3
// PORT_STATE_ACTIVE 4
void usbhs_isr()
{
uint32_t stat = USBHS_USBSTS;
USBHS_USBSTS = stat; // clear pending interrupts
//stat &= USBHS_USBINTR; // mask away unwanted interrupts
Serial.println();
Serial.print("ISR: ");
Serial.print(stat, HEX);
Serial.println();
if (stat & USBHS_USBSTS_UI) Serial.println(" USB Interrupt");
if (stat & USBHS_USBSTS_UEI) Serial.println(" USB Error");
if (stat & USBHS_USBSTS_PCI) Serial.println(" Port Change");
if (stat & USBHS_USBSTS_FRI) Serial.println(" Frame List Rollover");
if (stat & USBHS_USBSTS_SEI) Serial.println(" System Error");
if (stat & USBHS_USBSTS_AAI) Serial.println(" Async Advance (doorbell)");
if (stat & USBHS_USBSTS_URI) Serial.println(" Reset Recv");
if (stat & USBHS_USBSTS_SRI) Serial.println(" SOF");
if (stat & USBHS_USBSTS_SLI) Serial.println(" Suspend");
if (stat & USBHS_USBSTS_HCH) Serial.println(" Host Halted");
if (stat & USBHS_USBSTS_RCL) Serial.println(" Reclamation");
if (stat & USBHS_USBSTS_PS) Serial.println(" Periodic Sched En");
if (stat & USBHS_USBSTS_AS) Serial.println(" Async Sched En");
if (stat & USBHS_USBSTS_NAKI) Serial.println(" NAK");
if (stat & USBHS_USBSTS_UAI) Serial.println(" USB Async");
if (stat & USBHS_USBSTS_UPI) Serial.println(" USB Periodic");
if (stat & USBHS_USBSTS_TI0) Serial.println(" Timer0");
if (stat & USBHS_USBSTS_TI1) Serial.println(" Timer1");
if (stat & USBHS_USBSTS_UAI) { // completed qTD(s) from the async schedule
Serial.println("Async Followup");
print(async_followup_first, async_followup_last);
Transfer_t *p = async_followup_first;
while (p) {
if (followup_Transfer(p)) {
// transfer completed
Transfer_t *next = p->next_followup;
remove_from_async_followup_list(p);
free_Transfer(p);
p = next;
} else {
// transfer still pending
p = p->next_followup;
}
}
print(async_followup_first, async_followup_last);
}
if (stat & USBHS_USBSTS_UPI) { // completed qTD(s) from the periodic schedule
Serial.println("Periodic Followup");
Transfer_t *p = periodic_followup_first;
while (p) {
if (followup_Transfer(p)) {
// transfer completed
Transfer_t *next = p->next_followup;
remove_from_periodic_followup_list(p);
free_Transfer(p);
p = next;
} else {
// transfer still pending
p = p->next_followup;
}
}
}
if (stat & USBHS_USBSTS_PCI) { // port change detected
const uint32_t portstat = USBHS_PORTSC1;
Serial.print("port change: ");
Serial.print(portstat, HEX);
Serial.println();
USBHS_PORTSC1 = portstat | (USBHS_PORTSC_OCC|USBHS_PORTSC_PEC|USBHS_PORTSC_CSC);
if (portstat & USBHS_PORTSC_OCC) {
Serial.println(" overcurrent change");
}
if (portstat & USBHS_PORTSC_CSC) {
if (portstat & USBHS_PORTSC_CCS) {
Serial.println(" connect");
if (port_state == PORT_STATE_DISCONNECTED
|| port_state == PORT_STATE_DEBOUNCE) {
// 100 ms debounce (USB 2.0: TATTDB, page 150 & 188)
port_state = PORT_STATE_DEBOUNCE;
USBHS_GPTIMER0LD = 100000; // microseconds
USBHS_GPTIMER0CTL =
USBHS_GPTIMERCTL_RST | USBHS_GPTIMERCTL_RUN;
stat &= ~USBHS_USBSTS_TI0;
}
} else {
Serial.println(" disconnect");
port_state = PORT_STATE_DISCONNECTED;
USBPHY_CTRL_CLR = USBPHY_CTRL_ENHOSTDISCONDETECT;
// TODO: delete & clean up device state...
}
}
if (portstat & USBHS_PORTSC_PEC) {
// PEC bit only detects disable
Serial.println(" disable");
} else if (port_state == PORT_STATE_RESET && portstat & USBHS_PORTSC_PE) {
Serial.println(" port enabled");
port_state = PORT_STATE_RECOVERY;
// 10 ms reset recover (USB 2.0: TRSTRCY, page 151 & 188)
USBHS_GPTIMER0LD = 10000; // microseconds
USBHS_GPTIMER0CTL = USBHS_GPTIMERCTL_RST | USBHS_GPTIMERCTL_RUN;
if (USBHS_PORTSC1 & USBHS_PORTSC_HSP) {
// turn on high-speed disconnect detector
USBPHY_CTRL_SET = USBPHY_CTRL_ENHOSTDISCONDETECT;
}
}
if (portstat & USBHS_PORTSC_FPR) {
Serial.println(" force resume");
}
}
if (stat & USBHS_USBSTS_TI0) { // timer 0
Serial.println("timer");
if (port_state == PORT_STATE_DEBOUNCE) {
port_state = PORT_STATE_RESET;
USBHS_PORTSC1 |= USBHS_PORTSC_PR; // begin reset sequence
Serial.println(" begin reset");
} else if (port_state == PORT_STATE_RECOVERY) {
port_state = PORT_STATE_ACTIVE;
Serial.println(" end recovery");
// HCSPARAMS TTCTRL page 1671
uint32_t speed = (USBHS_PORTSC1 >> 26) & 3;
rootdev = new_Device(speed, 0, 0);
}
}
}
static uint32_t QH_capabilities1(uint32_t nak_count_reload, uint32_t control_endpoint_flag,
uint32_t max_packet_length, uint32_t head_of_list, uint32_t data_toggle_control,
uint32_t speed, uint32_t endpoint_number, uint32_t inactivate, uint32_t address)
{
return ( (nak_count_reload << 28) | (control_endpoint_flag << 27) |
(max_packet_length << 16) | (head_of_list << 15) |
(data_toggle_control << 14) | (speed << 12) | (endpoint_number << 8) |
(inactivate << 7) | (address << 0) );
}
static uint32_t QH_capabilities2(uint32_t high_bw_mult, uint32_t hub_port_number,
uint32_t hub_address, uint32_t split_completion_mask, uint32_t interrupt_schedule_mask)
{
return ( (high_bw_mult << 30) | (hub_port_number << 23) | (hub_address << 16) |
(split_completion_mask << 8) | (interrupt_schedule_mask << 0) );
}
// Create a new pipe. It's QH is added to the async or periodic schedule,
// and a halt qTD is added to the QH, so we can grow the qTD list later.
//
Pipe_t * new_Pipe(Device_t *dev, uint32_t type, uint32_t endpoint, uint32_t direction,
uint32_t max_packet_len)
{
Pipe_t *pipe;
Transfer_t *halt;
uint32_t c=0, dtc=0;
Serial.println("new_Pipe");
pipe = allocate_Pipe();
if (!pipe) return NULL;
halt = allocate_Transfer();
if (!halt) {
free_Pipe(pipe);
return NULL;
}
memset(pipe, 0, sizeof(Pipe_t));
memset(halt, 0, sizeof(Transfer_t));
halt->qtd.next = 1;
halt->qtd.token = 0x40;
pipe->device = dev;
pipe->qh.next = (uint32_t)halt;
pipe->qh.alt_next = 1;
pipe->direction = direction;
pipe->type = type;
if (type == 0) {
// control
if (dev->speed < 2) c = 1;
dtc = 1;
} else if (type == 2) {
// bulk
} else if (type == 3) {
// interrupt
}
pipe->qh.capabilities[0] = QH_capabilities1(15, c, max_packet_len, 0,
dtc, dev->speed, endpoint, 0, dev->address);
pipe->qh.capabilities[1] = QH_capabilities2(1, dev->hub_port,
dev->hub_address, 0, 0);
if (type == 0 || type == 2) {
// control or bulk: add to async queue
Pipe_t *list = (Pipe_t *)USBHS_ASYNCLISTADDR;
if (list == NULL) {
pipe->qh.capabilities[0] |= 0x8000; // H bit
pipe->qh.horizontal_link = (uint32_t)&(pipe->qh) | 2; // 2=QH
USBHS_ASYNCLISTADDR = (uint32_t)&(pipe->qh);
USBHS_USBCMD |= USBHS_USBCMD_ASE; // enable async schedule
Serial.println(" first in async list");
} else {
// EHCI 1.0: section 4.8.1, page 72
pipe->qh.horizontal_link = list->qh.horizontal_link;
list->qh.horizontal_link = (uint32_t)&(pipe->qh) | 2;
Serial.println(" added to async list");
}
} else if (type == 3) {
// interrupt: add to periodic schedule
// TODO: link it into the periodic table
}
return pipe;
}
// Fill in the qTD fields (token & data)
// t the Transfer qTD to initialize
// buf data to transfer
// len length of data
// pid type of packet: 0=OUT, 1=IN, 2=SETUP
// data01 value of DATA0/DATA1 toggle on 1st packet
// irq whether to generate an interrupt when transfer complete
//
void init_qTD(volatile Transfer_t *t, void *buf, uint32_t len,
uint32_t pid, uint32_t data01, bool irq)
{
t->qtd.alt_next = 1; // 1=terminate
if (data01) data01 = 0x80000000;
t->qtd.token = data01 | (len << 16) | (irq ? 0x8000 : 0) | (pid << 8) | 0x80;
uint32_t addr = (uint32_t)buf;
t->qtd.buffer[0] = addr;
addr &= 0xFFFFF000;
t->qtd.buffer[1] = addr + 0x1000;
t->qtd.buffer[2] = addr + 0x2000;
t->qtd.buffer[3] = addr + 0x3000;
t->qtd.buffer[4] = addr + 0x4000;
}
// Create a Transfer and queue it
//
bool new_Transfer(Pipe_t *pipe, void *buffer, uint32_t len)
{
Serial.println("new_Transfer");
Transfer_t *transfer = allocate_Transfer();
if (!transfer) return false;
if (pipe->type == 0) {
// control transfer
Transfer_t *data, *status;
uint32_t status_direction;
if (len > 16384) {
// hopefully we never need more
// than 16K in a control transfer
free_Transfer(transfer);
return false;
}
status = allocate_Transfer();
if (!status) {
free_Transfer(transfer);
return false;
}
if (len > 0) {
data = allocate_Transfer();
if (!data) {
free_Transfer(transfer);
free_Transfer(status);
return false;
}
init_qTD(data, buffer, len, pipe->direction, 1, false);
transfer->qtd.next = (uint32_t)data;
data->qtd.next = (uint32_t)status;
status_direction = pipe->direction ^ 1;
} else {
transfer->qtd.next = (uint32_t)status;
status_direction = 1; // always IN, USB 2.0 page 226
}
Serial.print("setup address ");
Serial.println((uint32_t)&pipe->device->setup, HEX);
init_qTD(transfer, &pipe->device->setup, 8, 2, 0, false);
init_qTD(status, NULL, 0, status_direction, 1, true);
status->pipe = pipe;
status->buffer = buffer;
status->length = len;
status->qtd.next = 1;
} else {
// bulk, interrupt or isochronous transfer
free_Transfer(transfer);
return false;
}
// find halt qTD
Transfer_t *halt = (Transfer_t *)(pipe->qh.next);
while (!(halt->qtd.token & 0x40)) halt = (Transfer_t *)(halt->qtd.next);
// transfer's token
uint32_t token = transfer->qtd.token;
// transfer becomes new halt qTD
transfer->qtd.token = 0x40;
// copy transfer non-token fields to halt
halt->qtd.next = transfer->qtd.next;
halt->qtd.alt_next = transfer->qtd.alt_next;
halt->qtd.buffer[0] = transfer->qtd.buffer[0]; // TODO: optimize...
halt->qtd.buffer[1] = transfer->qtd.buffer[1];
halt->qtd.buffer[2] = transfer->qtd.buffer[2];
halt->qtd.buffer[3] = transfer->qtd.buffer[3];
halt->qtd.buffer[4] = transfer->qtd.buffer[4];
halt->pipe = pipe;
// find the last qTD we're adding
Transfer_t *last = halt;
while ((uint32_t)(last->qtd.next) != 1) last = (Transfer_t *)(last->qtd.next);
// last points to transfer (which becomes new halt)
last->qtd.next = (uint32_t)transfer;
transfer->qtd.next = 1;
// link all the new qTD by next_followup & prev_followup
Transfer_t *prev = NULL;
Transfer_t *p = halt;
while (p->qtd.next != (uint32_t)transfer) {
Transfer_t *next = (Transfer_t *)p->qtd.next;
p->prev_followup = prev;
p->next_followup = next;
prev = p;
p = next;
}
p->prev_followup = prev;
p->next_followup = NULL;
print(halt, p);
// add them to a followup list
if (pipe->type == 0 || pipe->type == 2) {
// control or bulk
add_to_async_followup_list(halt, p);
} else {
// interrupt
add_to_periodic_followup_list(halt, p);
}
// old halt becomes new transfer, this commits all new qTDs to QH
halt->qtd.token = token;
return true;
}
bool followup_Transfer(Transfer_t *transfer)
{
Serial.print(" Followup ");
Serial.println((uint32_t)transfer, HEX);
if (!(transfer->qtd.token & 0x80)) {
// TODO: check error status
if (transfer->qtd.token & 0x8000) {
// this transfer caused an interrupt
if (transfer->pipe->callback_function) {
// do the callback
(*(transfer->pipe->callback_function))(transfer);
}
}
// do callback function...
Serial.println(" completed");
return true;
}
return false;
}
void add_to_async_followup_list(Transfer_t *first, Transfer_t *last)
{
last->next_followup = NULL; // always add to end of list
if (async_followup_last == NULL) {
first->prev_followup = NULL;
async_followup_first = first;
} else {
first->prev_followup = async_followup_last;
async_followup_last->next_followup = first;
}
async_followup_last = last;
}
void remove_from_async_followup_list(Transfer_t *transfer)
{
Transfer_t *next = transfer->next_followup;
Transfer_t *prev = transfer->prev_followup;
if (prev) {
prev->next_followup = next;
} else {
async_followup_first = next;
}
if (next) {
next->prev_followup = prev;
} else {
async_followup_last = prev;
}
}
void add_to_periodic_followup_list(Transfer_t *first, Transfer_t *last)
{
last->next_followup = NULL; // always add to end of list
if (periodic_followup_last == NULL) {
first->prev_followup = NULL;
periodic_followup_first = first;
} else {
first->prev_followup = periodic_followup_last;
periodic_followup_last->next_followup = first;
}
periodic_followup_last = last;
}
void remove_from_periodic_followup_list(Transfer_t *transfer)
{
Transfer_t *next = transfer->next_followup;
Transfer_t *prev = transfer->prev_followup;
if (prev) {
prev->next_followup = next;
} else {
periodic_followup_first = next;
}
if (next) {
next->prev_followup = prev;
} else {
periodic_followup_last = prev;
}
}

230
enumeration.cpp Normal file
View File

@ -0,0 +1,230 @@
/* USB EHCI Host for Teensy 3.6
* Copyright 2017 Paul Stoffregen (paul@pjrc.com)
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <Arduino.h>
#include "USBHost.h"
void mk_setup(setup_t &s, uint32_t bmRequestType, uint32_t bRequest,
uint32_t wValue, uint32_t wIndex, uint32_t wLength)
{
s.word1 = bmRequestType | (bRequest << 8) | (wValue << 16);
s.word2 = wIndex | (wLength << 16);
}
static uint8_t enumbuf[256] __attribute__ ((aligned(16)));
// Create a new device and begin the enumeration process
//
Device_t * new_Device(uint32_t speed, uint32_t hub_addr, uint32_t hub_port)
{
Device_t *dev;
Serial.print("new_Device: ");
switch (speed) {
case 0: Serial.print("12"); break;
case 1: Serial.print("1.5"); break;
case 2: Serial.print("480"); break;
default: Serial.print("??");
}
Serial.println(" Mbit/sec");
dev = allocate_Device();
if (!dev) return NULL;
memset(dev, 0, sizeof(Device_t));
dev->speed = speed;
dev->address = 0;
dev->hub_address = hub_addr;
dev->hub_port = hub_port;
dev->control_pipe = new_Pipe(dev, 0, 0, 0, 8);
if (!dev->control_pipe) {
free_Device(dev);
return NULL;
}
dev->control_pipe->callback_function = &enumeration;
dev->control_pipe->direction = 1; // 1=IN
mk_setup(dev->setup, 0x80, 6, 0x0100, 0, 8); // 6=GET_DESCRIPTOR
new_Transfer(dev->control_pipe, enumbuf, 8);
return dev;
}
void enumeration(const Transfer_t *transfer)
{
uint32_t len;
Serial.print(" CALLBACK: ");
print_hexbytes(transfer->buffer, transfer->length);
//print(transfer);
Device_t *dev = transfer->pipe->device;
while (1) {
// Within this large switch/case, "break" means we've done
// some work, but more remains to be done in a different
// state. Generally break is used after parsing received
// data, but what happens next could be different states.
// When completed, return is used. Generally, return happens
// only after a new control transfer is queued, or when
// enumeration is complete and no more communication is needed.
switch (dev->enum_state) {
case 0: // read 8 bytes of device desc, set max packet, and send set address
pipe_set_maxlen(dev->control_pipe, enumbuf[7]);
mk_setup(dev->setup, 0, 5, assign_addr(), 0, 0); // 5=SET_ADDRESS
new_Transfer(dev->control_pipe, NULL, 0);
dev->enum_state = 1;
return;
case 1: // request all 18 bytes of device descriptor
pipe_set_addr(dev->control_pipe, dev->setup.wValue);
mk_setup(dev->setup, 0x80, 6, 0x0100, 0, 18); // 6=GET_DESCRIPTOR
new_Transfer(dev->control_pipe, enumbuf, 18);
dev->enum_state = 2;
return;
case 2: // parse 18 device desc bytes
dev->bDeviceClass = enumbuf[4];
dev->bDeviceSubClass = enumbuf[5];
dev->bDeviceProtocol = enumbuf[6];
dev->idVendor = enumbuf[8] | (enumbuf[9] << 8);
dev->idProduct = enumbuf[10] | (enumbuf[11] << 8);
enumbuf[0] = enumbuf[14];
enumbuf[1] = enumbuf[15];
enumbuf[2] = enumbuf[16];
if ((enumbuf[0] | enumbuf[1] | enumbuf[2]) > 0) {
dev->enum_state = 3;
} else {
dev->enum_state = 11;
}
break;
case 3: // request Language ID
len = sizeof(enumbuf) - 4;
mk_setup(dev->setup, 0x80, 6, 0x0300, 0, len); // 6=GET_DESCRIPTOR
new_Transfer(dev->control_pipe, enumbuf + 4, len);
dev->enum_state = 4;
return;
case 4: // parse Language ID
if (enumbuf[4] < 4 || enumbuf[5] != 3) {
dev->enum_state = 11;
} else {
dev->LanguageID = enumbuf[6] | (enumbuf[7] << 8);
if (enumbuf[0]) dev->enum_state = 5;
else if (enumbuf[1]) dev->enum_state = 7;
else if (enumbuf[2]) dev->enum_state = 9;
else dev->enum_state = 11;
}
break;
case 5: // request Manufacturer string
len = sizeof(enumbuf) - 4;
mk_setup(dev->setup, 0x80, 6, 0x0300 | enumbuf[0], dev->LanguageID, len);
new_Transfer(dev->control_pipe, enumbuf + 4, len);
dev->enum_state = 6;
return;
case 6: // parse Manufacturer string
// TODO: receive the string...
if (enumbuf[1]) dev->enum_state = 7;
else if (enumbuf[2]) dev->enum_state = 9;
else dev->enum_state = 11;
break;
case 7: // request Product string
len = sizeof(enumbuf) - 4;
mk_setup(dev->setup, 0x80, 6, 0x0300 | enumbuf[1], dev->LanguageID, len);
new_Transfer(dev->control_pipe, enumbuf + 4, len);
dev->enum_state = 8;
return;
case 8: // parse Product string
// TODO: receive the string...
if (enumbuf[2]) dev->enum_state = 9;
else dev->enum_state = 11;
break;
case 9: // request Serial Number string
len = sizeof(enumbuf) - 4;
mk_setup(dev->setup, 0x80, 6, 0x0300 | enumbuf[2], dev->LanguageID, len);
new_Transfer(dev->control_pipe, enumbuf + 4, len);
dev->enum_state = 10;
return;
case 10: // parse Serial Number string
// TODO: receive the string...
dev->enum_state = 11;
break;
case 11: // request first 9 bytes of config desc
mk_setup(dev->setup, 0x80, 6, 0x0200, 0, 9); // 6=GET_DESCRIPTOR
new_Transfer(dev->control_pipe, enumbuf, 9);
dev->enum_state = 12;
return;
case 12: // read 9 bytes, request all of config desc
len = enumbuf[2] | (enumbuf[3] << 8);
Serial.print("Config data length = ");
Serial.println(len);
if (len > sizeof(enumbuf)) {
// TODO: how to handle device with too much config data
}
mk_setup(dev->setup, 0x80, 6, 0x0200, 0, len); // 6=GET_DESCRIPTOR
new_Transfer(dev->control_pipe, enumbuf, len);
dev->enum_state = 13;
return;
case 13: // read all config desc, send set config
Serial.print("bNumInterfaces = ");
Serial.println(enumbuf[4]);
Serial.print("bConfigurationValue = ");
Serial.println(enumbuf[5]);
// TODO: actually do something with interface descriptor?
mk_setup(dev->setup, 0, 9, enumbuf[5], 0, 0); // 9=SET_CONFIGURATION
new_Transfer(dev->control_pipe, NULL, 0);
dev->enum_state = 14;
return;
case 14: // device is now configured
// TODO: initialize drivers??
dev->enum_state = 15;
return;
case 15: // control transfers for other stuff??
default:
return;
}
}
}
uint32_t assign_addr(void)
{
return 29; // TODO: when multiple devices, assign a unique address
}
void pipe_set_maxlen(Pipe_t *pipe, uint32_t maxlen)
{
Serial.print("pipe_set_maxlen ");
Serial.println(maxlen);
pipe->qh.capabilities[0] = (pipe->qh.capabilities[0] & 0x8000FFFF) | (maxlen << 16);
}
void pipe_set_addr(Pipe_t *pipe, uint32_t addr)
{
Serial.print("pipe_set_addr ");
Serial.println(addr);
pipe->qh.capabilities[0] = (pipe->qh.capabilities[0] & 0xFFFFFF80) | addr;
}
uint32_t pipe_get_addr(Pipe_t *pipe)
{
return pipe->qh.capabilities[0] & 0xFFFFFF80;
}

View File

@ -21,20 +21,7 @@
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "host.h"
uint32_t periodictable[32] __attribute__ ((aligned(4096), used));
uint8_t port_state;
#define PORT_STATE_DISCONNECTED 0
#define PORT_STATE_DEBOUNCE 1
#define PORT_STATE_RESET 2
#define PORT_STATE_RECOVERY 3
#define PORT_STATE_ACTIVE 4
Device_t *rootdev=NULL;
Transfer_t *async_followup_first=NULL;
Transfer_t *async_followup_last=NULL;
Transfer_t *periodic_followup_first=NULL;
Transfer_t *periodic_followup_last=NULL;
#include "USBHost.h"
void setup()
{
@ -43,111 +30,11 @@ void setup()
digitalWrite(32, LOW);
pinMode(30, OUTPUT); // pin 30 = debug info - use oscilloscope
digitalWrite(30, LOW);
// Teensy 3.6 has USB host power controlled by PTE6
PORTE_PCR6 = PORT_PCR_MUX(1);
GPIOE_PDDR |= (1<<6);
GPIOE_PSOR = (1<<6); // turn on USB host power
while (!Serial) ; // wait
while (!Serial) ; // wait for Arduino Serial Monitor
Serial.println("USB Host Testing");
Serial.print("sizeof Device = ");
Serial.println(sizeof(Device_t));
Serial.print("sizeof Pipe = ");
Serial.println(sizeof(Pipe_t));
Serial.print("sizeof Transfer = ");
Serial.println(sizeof(Transfer_t));
// configure the MPU to allow USBHS DMA to access memory
MPU_RGDAAC0 |= 0x30000000;
Serial.print("MPU_RGDAAC0 = ");
Serial.println(MPU_RGDAAC0, HEX);
// turn on clocks
MCG_C1 |= MCG_C1_IRCLKEN; // enable MCGIRCLK 32kHz
OSC0_CR |= OSC_ERCLKEN;
SIM_SOPT2 |= SIM_SOPT2_USBREGEN; // turn on USB regulator
SIM_SOPT2 &= ~SIM_SOPT2_USBSLSRC; // use IRC for slow clock
print("power up USBHS PHY");
SIM_USBPHYCTL |= SIM_USBPHYCTL_USBDISILIM; // disable USB current limit
//SIM_USBPHYCTL = SIM_USBPHYCTL_USBDISILIM | SIM_USBPHYCTL_USB3VOUTTRG(6); // pg 237
SIM_SCGC3 |= SIM_SCGC3_USBHSDCD | SIM_SCGC3_USBHSPHY | SIM_SCGC3_USBHS;
USBHSDCD_CLOCK = 33 << 2;
print("init USBHS PHY & PLL");
// init process: page 1681-1682
USBPHY_CTRL_CLR = (USBPHY_CTRL_SFTRST | USBPHY_CTRL_CLKGATE); // // CTRL pg 1698
USBPHY_CTRL_SET = USBPHY_CTRL_ENUTMILEVEL2 | USBPHY_CTRL_ENUTMILEVEL3;
USBPHY_TRIM_OVERRIDE_EN_SET = 1;
USBPHY_PLL_SIC = USBPHY_PLL_SIC_PLL_POWER | USBPHY_PLL_SIC_PLL_ENABLE |
USBPHY_PLL_SIC_PLL_DIV_SEL(1) | USBPHY_PLL_SIC_PLL_EN_USB_CLKS;
// wait for the PLL to lock
int count=0;
while ((USBPHY_PLL_SIC & USBPHY_PLL_SIC_PLL_LOCK) == 0) {
count++;
}
Serial.print("PLL locked, waited ");
Serial.println(count);
// turn on power to PHY
USBPHY_PWD = 0;
delay(10);
// sanity check, connect 470K pullup & 100K pulldown and watch D+ voltage change
//USBPHY_ANACTRL_CLR = (1<<10); // turn off both 15K pulldowns... works! :)
// sanity check, output clocks on pin 9 for testing
//SIM_SOPT2 = SIM_SOPT2 & (~SIM_SOPT2_CLKOUTSEL(7)) | SIM_SOPT2_CLKOUTSEL(3); // LPO 1kHz
//SIM_SOPT2 = SIM_SOPT2 & (~SIM_SOPT2_CLKOUTSEL(7)) | SIM_SOPT2_CLKOUTSEL(2); // Flash
//SIM_SOPT2 = SIM_SOPT2 & (~SIM_SOPT2_CLKOUTSEL(7)) | SIM_SOPT2_CLKOUTSEL(6); // XTAL
//SIM_SOPT2 = SIM_SOPT2 & (~SIM_SOPT2_CLKOUTSEL(7)) | SIM_SOPT2_CLKOUTSEL(7); // IRC 48MHz
//SIM_SOPT2 = SIM_SOPT2 & (~SIM_SOPT2_CLKOUTSEL(7)) | SIM_SOPT2_CLKOUTSEL(4); // MCGIRCLK
//CORE_PIN9_CONFIG = PORT_PCR_MUX(5); // CLKOUT on PTC3 Alt5 (Arduino pin 9)
// now with the PHY up and running, start up USBHS
print("begin ehci reset");
USBHS_USBCMD |= USBHS_USBCMD_RST;
count = 0;
while (USBHS_USBCMD & USBHS_USBCMD_RST) {
count++;
}
print(" reset waited ", count);
init_Device_Pipe_Transfer_memory();
for (int i=0; i < 32; i++) {
periodictable[i] = 1;
}
port_state = PORT_STATE_DISCONNECTED;
USBHS_USB_SBUSCFG = 1; // System Bus Interface Configuration
// turn on the USBHS controller
//USBHS_USBMODE = USBHS_USBMODE_TXHSD(5) | USBHS_USBMODE_CM(3); // host mode
USBHS_USBMODE = USBHS_USBMODE_CM(3); // host mode
USBHS_USBINTR = 0;
USBHS_PERIODICLISTBASE = (uint32_t)periodictable;
USBHS_FRINDEX = 0;
USBHS_ASYNCLISTADDR = 0;
USBHS_USBCMD = USBHS_USBCMD_ITC(8) | USBHS_USBCMD_RS |
USBHS_USBCMD_ASP(3) | USBHS_USBCMD_ASPE |
USBHS_USBCMD_FS2 | USBHS_USBCMD_FS(1); // periodic table is 32 pointers
// turn on the USB port
//USBHS_PORTSC1 = USBHS_PORTSC_PP;
USBHS_PORTSC1 |= USBHS_PORTSC_PP;
//USBHS_PORTSC1 |= USBHS_PORTSC_PFSC; // force 12 Mbit/sec
//USBHS_PORTSC1 |= USBHS_PORTSC_PHCD; // phy off
Serial.print("USBHS_ASYNCLISTADDR = ");
Serial.println(USBHS_ASYNCLISTADDR, HEX);
Serial.print("USBHS_PERIODICLISTBASE = ");
Serial.println(USBHS_PERIODICLISTBASE, HEX);
Serial.print("periodictable = ");
Serial.println((uint32_t)periodictable, HEX);
// enable interrupts, after this point interruts to all the work
NVIC_ENABLE_IRQ(IRQ_USBHS);
USBHS_USBINTR = USBHS_USBINTR_PCE | USBHS_USBINTR_TIE0;
USBHS_USBINTR |= USBHS_USBINTR_UEE | USBHS_USBINTR_SEE;
USBHS_USBINTR |= USBHS_USBINTR_AAE;
USBHS_USBINTR |= USBHS_USBINTR_UPIE | USBHS_USBINTR_UAIE;
begin();
delay(25);
Serial.println("Plug in device...");
@ -162,6 +49,7 @@ void setup()
#endif
}
void loop()
{
}
@ -175,830 +63,4 @@ void pulse(int usec)
digitalWriteFast(30, LOW);
}
// EHCI registers page default
// -------------- ---- -------
// USBHS_USBCMD 1599 00080000 USB Command
// USBHS_USBSTS 1602 00000000 USB Status
// USBHS_USBINTR 1606 00000000 USB Interrupt Enable
// USBHS_FRINDEX 1609 00000000 Frame Index Register
// USBHS_PERIODICLISTBASE 1610 undefine Periodic Frame List Base Address
// USBHS_ASYNCLISTADDR 1612 undefine Asynchronous List Address
// USBHS_PORTSC1 1619 00002000 Port Status and Control
// USBHS_USBMODE 1629 00005000 USB Mode
// USBHS_GPTIMERnCTL 1591 00000000 General Purpose Timer n Control
// PORT_STATE_DISCONNECTED 0
// PORT_STATE_DEBOUNCE 1
// PORT_STATE_RESET 2
// PORT_STATE_RECOVERY 3
// PORT_STATE_ACTIVE 4
void usbhs_isr(void)
{
uint32_t stat = USBHS_USBSTS;
USBHS_USBSTS = stat; // clear pending interrupts
//stat &= USBHS_USBINTR; // mask away unwanted interrupts
Serial.println();
Serial.print("ISR: ");
Serial.print(stat, HEX);
Serial.println();
if (stat & USBHS_USBSTS_UI) Serial.println(" USB Interrupt");
if (stat & USBHS_USBSTS_UEI) Serial.println(" USB Error");
if (stat & USBHS_USBSTS_PCI) Serial.println(" Port Change");
if (stat & USBHS_USBSTS_FRI) Serial.println(" Frame List Rollover");
if (stat & USBHS_USBSTS_SEI) Serial.println(" System Error");
if (stat & USBHS_USBSTS_AAI) Serial.println(" Async Advance (doorbell)");
if (stat & USBHS_USBSTS_URI) Serial.println(" Reset Recv");
if (stat & USBHS_USBSTS_SRI) Serial.println(" SOF");
if (stat & USBHS_USBSTS_SLI) Serial.println(" Suspend");
if (stat & USBHS_USBSTS_HCH) Serial.println(" Host Halted");
if (stat & USBHS_USBSTS_RCL) Serial.println(" Reclamation");
if (stat & USBHS_USBSTS_PS) Serial.println(" Periodic Sched En");
if (stat & USBHS_USBSTS_AS) Serial.println(" Async Sched En");
if (stat & USBHS_USBSTS_NAKI) Serial.println(" NAK");
if (stat & USBHS_USBSTS_UAI) Serial.println(" USB Async");
if (stat & USBHS_USBSTS_UPI) Serial.println(" USB Periodic");
if (stat & USBHS_USBSTS_TI0) Serial.println(" Timer0");
if (stat & USBHS_USBSTS_TI1) Serial.println(" Timer1");
if (stat & USBHS_USBSTS_UAI) { // completed qTD(s) from the async schedule
Serial.println("Async Followup");
print(async_followup_first, async_followup_last);
Transfer_t *p = async_followup_first;
while (p) {
if (followup_Transfer(p)) {
// transfer completed
Transfer_t *next = p->next_followup;
remove_from_async_followup_list(p);
free_Transfer(p);
p = next;
} else {
// transfer still pending
p = p->next_followup;
}
}
print(async_followup_first, async_followup_last);
}
if (stat & USBHS_USBSTS_UPI) { // completed qTD(s) from the periodic schedule
Serial.println("Periodic Followup");
Transfer_t *p = periodic_followup_first;
while (p) {
if (followup_Transfer(p)) {
// transfer completed
Transfer_t *next = p->next_followup;
remove_from_periodic_followup_list(p);
free_Transfer(p);
p = next;
} else {
// transfer still pending
p = p->next_followup;
}
}
}
if (stat & USBHS_USBSTS_PCI) { // port change detected
const uint32_t portstat = USBHS_PORTSC1;
Serial.print("port change: ");
Serial.print(portstat, HEX);
Serial.println();
USBHS_PORTSC1 = portstat | (USBHS_PORTSC_OCC|USBHS_PORTSC_PEC|USBHS_PORTSC_CSC);
if (portstat & USBHS_PORTSC_OCC) {
Serial.println(" overcurrent change");
}
if (portstat & USBHS_PORTSC_CSC) {
if (portstat & USBHS_PORTSC_CCS) {
Serial.println(" connect");
if (port_state == PORT_STATE_DISCONNECTED
|| port_state == PORT_STATE_DEBOUNCE) {
// 100 ms debounce (USB 2.0: TATTDB, page 150 & 188)
port_state = PORT_STATE_DEBOUNCE;
USBHS_GPTIMER0LD = 100000; // microseconds
USBHS_GPTIMER0CTL =
USBHS_GPTIMERCTL_RST | USBHS_GPTIMERCTL_RUN;
stat &= ~USBHS_USBSTS_TI0;
}
} else {
Serial.println(" disconnect");
port_state = PORT_STATE_DISCONNECTED;
USBPHY_CTRL_CLR = USBPHY_CTRL_ENHOSTDISCONDETECT;
// TODO: delete & clean up device state...
}
}
if (portstat & USBHS_PORTSC_PEC) {
// PEC bit only detects disable
Serial.println(" disable");
} else if (port_state == PORT_STATE_RESET && portstat & USBHS_PORTSC_PE) {
Serial.println(" port enabled");
port_state = PORT_STATE_RECOVERY;
// 10 ms reset recover (USB 2.0: TRSTRCY, page 151 & 188)
USBHS_GPTIMER0LD = 10000; // microseconds
USBHS_GPTIMER0CTL = USBHS_GPTIMERCTL_RST | USBHS_GPTIMERCTL_RUN;
if (USBHS_PORTSC1 & USBHS_PORTSC_HSP) {
// turn on high-speed disconnect detector
USBPHY_CTRL_SET = USBPHY_CTRL_ENHOSTDISCONDETECT;
}
}
if (portstat & USBHS_PORTSC_FPR) {
Serial.println(" force resume");
}
pulse(1);
}
if (stat & USBHS_USBSTS_TI0) { // timer 0
Serial.println("timer");
pulse(2);
if (port_state == PORT_STATE_DEBOUNCE) {
port_state = PORT_STATE_RESET;
USBHS_PORTSC1 |= USBHS_PORTSC_PR; // begin reset sequence
Serial.println(" begin reset");
} else if (port_state == PORT_STATE_RECOVERY) {
port_state = PORT_STATE_ACTIVE;
Serial.println(" end recovery");
// HCSPARAMS TTCTRL page 1671
uint32_t speed = (USBHS_PORTSC1 >> 26) & 3;
rootdev = new_Device(speed, 0, 0);
}
}
}
void mk_setup(setup_t &s, uint32_t bmRequestType, uint32_t bRequest,
uint32_t wValue, uint32_t wIndex, uint32_t wLength)
{
s.word1 = bmRequestType | (bRequest << 8) | (wValue << 16);
s.word2 = wIndex | (wLength << 16);
}
static uint8_t enumbuf[256] __attribute__ ((aligned(16)));
void enumeration(const Transfer_t *transfer)
{
uint32_t len;
Serial.print(" CALLBACK: ");
print_hexbytes(transfer->buffer, transfer->length);
//print(transfer);
Device_t *dev = transfer->pipe->device;
while (1) {
// Within this large switch/case, "break" means we've done
// some work, but more remains to be done in a different
// state. Generally break is used after parsing received
// data, but what happens next could be different states.
// When completed, return is used. Generally, return happens
// only after a new control transfer is queued, or when
// enumeration is complete and no more communication is needed.
switch (dev->enum_state) {
case 0: // read 8 bytes of device desc, set max packet, and send set address
pipe_set_maxlen(dev->control_pipe, enumbuf[7]);
mk_setup(dev->setup, 0, 5, assign_addr(), 0, 0); // 5=SET_ADDRESS
new_Transfer(dev->control_pipe, NULL, 0);
dev->enum_state = 1;
return;
case 1: // request all 18 bytes of device descriptor
pipe_set_addr(dev->control_pipe, dev->setup.wValue);
mk_setup(dev->setup, 0x80, 6, 0x0100, 0, 18); // 6=GET_DESCRIPTOR
new_Transfer(dev->control_pipe, enumbuf, 18);
dev->enum_state = 2;
return;
case 2: // parse 18 device desc bytes
dev->bDeviceClass = enumbuf[4];
dev->bDeviceSubClass = enumbuf[5];
dev->bDeviceProtocol = enumbuf[6];
dev->idVendor = enumbuf[8] | (enumbuf[9] << 8);
dev->idProduct = enumbuf[10] | (enumbuf[11] << 8);
enumbuf[0] = enumbuf[14];
enumbuf[1] = enumbuf[15];
enumbuf[2] = enumbuf[16];
if ((enumbuf[0] | enumbuf[1] | enumbuf[2]) > 0) {
dev->enum_state = 3;
} else {
dev->enum_state = 11;
}
break;
case 3: // request Language ID
len = sizeof(enumbuf) - 4;
mk_setup(dev->setup, 0x80, 6, 0x0300, 0, len); // 6=GET_DESCRIPTOR
new_Transfer(dev->control_pipe, enumbuf + 4, len);
dev->enum_state = 4;
return;
case 4: // parse Language ID
if (enumbuf[4] < 4 || enumbuf[5] != 3) {
dev->enum_state = 11;
} else {
dev->LanguageID = enumbuf[6] | (enumbuf[7] << 8);
if (enumbuf[0]) dev->enum_state = 5;
else if (enumbuf[1]) dev->enum_state = 7;
else if (enumbuf[2]) dev->enum_state = 9;
else dev->enum_state = 11;
}
break;
case 5: // request Manufacturer string
len = sizeof(enumbuf) - 4;
mk_setup(dev->setup, 0x80, 6, 0x0300 | enumbuf[0], dev->LanguageID, len);
new_Transfer(dev->control_pipe, enumbuf + 4, len);
dev->enum_state = 6;
return;
case 6: // parse Manufacturer string
// TODO: receive the string...
if (enumbuf[1]) dev->enum_state = 7;
else if (enumbuf[2]) dev->enum_state = 9;
else dev->enum_state = 11;
break;
case 7: // request Product string
len = sizeof(enumbuf) - 4;
mk_setup(dev->setup, 0x80, 6, 0x0300 | enumbuf[1], dev->LanguageID, len);
new_Transfer(dev->control_pipe, enumbuf + 4, len);
dev->enum_state = 8;
return;
case 8: // parse Product string
// TODO: receive the string...
if (enumbuf[2]) dev->enum_state = 9;
else dev->enum_state = 11;
break;
case 9: // request Serial Number string
len = sizeof(enumbuf) - 4;
mk_setup(dev->setup, 0x80, 6, 0x0300 | enumbuf[2], dev->LanguageID, len);
new_Transfer(dev->control_pipe, enumbuf + 4, len);
dev->enum_state = 10;
return;
case 10: // parse Serial Number string
// TODO: receive the string...
dev->enum_state = 11;
break;
case 11: // request first 9 bytes of config desc
mk_setup(dev->setup, 0x80, 6, 0x0200, 0, 9); // 6=GET_DESCRIPTOR
new_Transfer(dev->control_pipe, enumbuf, 9);
dev->enum_state = 12;
return;
case 12: // read 9 bytes, request all of config desc
len = enumbuf[2] | (enumbuf[3] << 8);
Serial.print("Config data length = ");
Serial.println(len);
if (len > sizeof(enumbuf)) {
// TODO: how to handle device with too much config data
}
mk_setup(dev->setup, 0x80, 6, 0x0200, 0, len); // 6=GET_DESCRIPTOR
new_Transfer(dev->control_pipe, enumbuf, len);
dev->enum_state = 13;
return;
case 13: // read all config desc, send set config
Serial.print("bNumInterfaces = ");
Serial.println(enumbuf[4]);
Serial.print("bConfigurationValue = ");
Serial.println(enumbuf[5]);
// TODO: actually do something with interface descriptor?
mk_setup(dev->setup, 0, 9, enumbuf[5], 0, 0); // 9=SET_CONFIGURATION
new_Transfer(dev->control_pipe, NULL, 0);
dev->enum_state = 14;
return;
case 14: // device is now configured
// TODO: initialize drivers??
dev->enum_state = 15;
return;
case 15: // control transfers for other stuff??
default:
return;
}
}
}
uint32_t assign_addr(void)
{
return 29; // TODO: when multiple devices, assign a unique address
}
void pipe_set_maxlen(Pipe_t *pipe, uint32_t maxlen)
{
Serial.print("pipe_set_maxlen ");
Serial.println(maxlen);
pipe->qh.capabilities[0] = (pipe->qh.capabilities[0] & 0x8000FFFF) | (maxlen << 16);
}
void pipe_set_addr(Pipe_t *pipe, uint32_t addr)
{
Serial.print("pipe_set_addr ");
Serial.println(addr);
pipe->qh.capabilities[0] = (pipe->qh.capabilities[0] & 0xFFFFFF80) | addr;
}
uint32_t pipe_get_addr(Pipe_t *pipe)
{
return pipe->qh.capabilities[0] & 0xFFFFFF80;
}
// Create a new device and begin the enumeration process
//
Device_t * new_Device(uint32_t speed, uint32_t hub_addr, uint32_t hub_port)
{
Device_t *dev;
Serial.print("new_Device: ");
switch (speed) {
case 0: Serial.print("12"); break;
case 1: Serial.print("1.5"); break;
case 2: Serial.print("480"); break;
default: Serial.print("??");
}
Serial.println(" Mbit/sec");
dev = allocate_Device();
if (!dev) return NULL;
memset(dev, 0, sizeof(Device_t));
dev->speed = speed;
dev->address = 0;
dev->hub_address = hub_addr;
dev->hub_port = hub_port;
dev->control_pipe = new_Pipe(dev, 0, 0, 0, 8);
if (!dev->control_pipe) {
free_Device(dev);
return NULL;
}
dev->control_pipe->callback_function = &enumeration;
dev->control_pipe->direction = 1; // 1=IN
mk_setup(dev->setup, 0x80, 6, 0x0100, 0, 8); // 6=GET_DESCRIPTOR
new_Transfer(dev->control_pipe, enumbuf, 8);
return dev;
}
static uint32_t QH_capabilities1(uint32_t nak_count_reload, uint32_t control_endpoint_flag,
uint32_t max_packet_length, uint32_t head_of_list, uint32_t data_toggle_control,
uint32_t speed, uint32_t endpoint_number, uint32_t inactivate, uint32_t address)
{
return ( (nak_count_reload << 28) | (control_endpoint_flag << 27) |
(max_packet_length << 16) | (head_of_list << 15) |
(data_toggle_control << 14) | (speed << 12) | (endpoint_number << 8) |
(inactivate << 7) | (address << 0) );
}
static uint32_t QH_capabilities2(uint32_t high_bw_mult, uint32_t hub_port_number,
uint32_t hub_address, uint32_t split_completion_mask, uint32_t interrupt_schedule_mask)
{
return ( (high_bw_mult << 30) | (hub_port_number << 23) | (hub_address << 16) |
(split_completion_mask << 8) | (interrupt_schedule_mask << 0) );
}
// Create a new pipe. It's QH is added to the async or periodic schedule,
// and a halt qTD is added to the QH, so we can grow the qTD list later.
//
Pipe_t * new_Pipe(Device_t *dev, uint32_t type, uint32_t endpoint, uint32_t direction,
uint32_t max_packet_len)
{
Pipe_t *pipe;
Transfer_t *halt;
uint32_t c=0, dtc=0;
Serial.println("new_Pipe");
pipe = allocate_Pipe();
if (!pipe) return NULL;
halt = allocate_Transfer();
if (!halt) {
free_Pipe(pipe);
return NULL;
}
memset(pipe, 0, sizeof(Pipe_t));
memset(halt, 0, sizeof(Transfer_t));
halt->qtd.next = 1;
halt->qtd.token = 0x40;
pipe->device = dev;
pipe->qh.next = (uint32_t)halt;
pipe->qh.alt_next = 1;
pipe->direction = direction;
pipe->type = type;
if (type == 0) {
// control
if (dev->speed < 2) c = 1;
dtc = 1;
} else if (type == 2) {
// bulk
} else if (type == 3) {
// interrupt
}
pipe->qh.capabilities[0] = QH_capabilities1(15, c, max_packet_len, 0,
dtc, dev->speed, endpoint, 0, dev->address);
pipe->qh.capabilities[1] = QH_capabilities2(1, dev->hub_port,
dev->hub_address, 0, 0);
if (type == 0 || type == 2) {
// control or bulk: add to async queue
Pipe_t *list = (Pipe_t *)USBHS_ASYNCLISTADDR;
if (list == NULL) {
pipe->qh.capabilities[0] |= 0x8000; // H bit
pipe->qh.horizontal_link = (uint32_t)&(pipe->qh) | 2; // 2=QH
USBHS_ASYNCLISTADDR = (uint32_t)&(pipe->qh);
USBHS_USBCMD |= USBHS_USBCMD_ASE; // enable async schedule
Serial.println(" first in async list");
} else {
// EHCI 1.0: section 4.8.1, page 72
pipe->qh.horizontal_link = list->qh.horizontal_link;
list->qh.horizontal_link = (uint32_t)&(pipe->qh) | 2;
Serial.println(" added to async list");
}
} else if (type == 3) {
// interrupt: add to periodic schedule
// TODO: link it into the periodic table
}
return pipe;
}
// Fill in the qTD fields (token & data)
// t the Transfer qTD to initialize
// buf data to transfer
// len length of data
// pid type of packet: 0=OUT, 1=IN, 2=SETUP
// data01 value of DATA0/DATA1 toggle on 1st packet
// irq whether to generate an interrupt when transfer complete
//
void init_qTD(volatile Transfer_t *t, void *buf, uint32_t len,
uint32_t pid, uint32_t data01, bool irq)
{
t->qtd.alt_next = 1; // 1=terminate
if (data01) data01 = 0x80000000;
t->qtd.token = data01 | (len << 16) | (irq ? 0x8000 : 0) | (pid << 8) | 0x80;
uint32_t addr = (uint32_t)buf;
t->qtd.buffer[0] = addr;
addr &= 0xFFFFF000;
t->qtd.buffer[1] = addr + 0x1000;
t->qtd.buffer[2] = addr + 0x2000;
t->qtd.buffer[3] = addr + 0x3000;
t->qtd.buffer[4] = addr + 0x4000;
}
// Create a Transfer and queue it
//
bool new_Transfer(Pipe_t *pipe, void *buffer, uint32_t len)
{
Serial.println("new_Transfer");
Transfer_t *transfer = allocate_Transfer();
if (!transfer) return false;
if (pipe->type == 0) {
// control transfer
Transfer_t *data, *status;
uint32_t status_direction;
if (len > 16384) {
// hopefully we never need more
// than 16K in a control transfer
free_Transfer(transfer);
return false;
}
status = allocate_Transfer();
if (!status) {
free_Transfer(transfer);
return false;
}
if (len > 0) {
data = allocate_Transfer();
if (!data) {
free_Transfer(transfer);
free_Transfer(status);
return false;
}
init_qTD(data, buffer, len, pipe->direction, 1, false);
transfer->qtd.next = (uint32_t)data;
data->qtd.next = (uint32_t)status;
status_direction = pipe->direction ^ 1;
} else {
transfer->qtd.next = (uint32_t)status;
status_direction = 1; // always IN, USB 2.0 page 226
}
Serial.print("setup address ");
Serial.println((uint32_t)&pipe->device->setup, HEX);
init_qTD(transfer, &pipe->device->setup, 8, 2, 0, false);
init_qTD(status, NULL, 0, status_direction, 1, true);
status->pipe = pipe;
status->buffer = buffer;
status->length = len;
status->qtd.next = 1;
} else {
// bulk, interrupt or isochronous transfer
free_Transfer(transfer);
return false;
}
// find halt qTD
Transfer_t *halt = (Transfer_t *)(pipe->qh.next);
while (!(halt->qtd.token & 0x40)) halt = (Transfer_t *)(halt->qtd.next);
// transfer's token
uint32_t token = transfer->qtd.token;
// transfer becomes new halt qTD
transfer->qtd.token = 0x40;
// copy transfer non-token fields to halt
halt->qtd.next = transfer->qtd.next;
halt->qtd.alt_next = transfer->qtd.alt_next;
halt->qtd.buffer[0] = transfer->qtd.buffer[0]; // TODO: optimize...
halt->qtd.buffer[1] = transfer->qtd.buffer[1];
halt->qtd.buffer[2] = transfer->qtd.buffer[2];
halt->qtd.buffer[3] = transfer->qtd.buffer[3];
halt->qtd.buffer[4] = transfer->qtd.buffer[4];
halt->pipe = pipe;
// find the last qTD we're adding
Transfer_t *last = halt;
while ((uint32_t)(last->qtd.next) != 1) last = (Transfer_t *)(last->qtd.next);
// last points to transfer (which becomes new halt)
last->qtd.next = (uint32_t)transfer;
transfer->qtd.next = 1;
// link all the new qTD by next_followup & prev_followup
Transfer_t *prev = NULL;
Transfer_t *p = halt;
while (p->qtd.next != (uint32_t)transfer) {
Transfer_t *next = (Transfer_t *)p->qtd.next;
p->prev_followup = prev;
p->next_followup = next;
prev = p;
p = next;
}
p->prev_followup = prev;
p->next_followup = NULL;
print(halt, p);
// add them to a followup list
if (pipe->type == 0 || pipe->type == 2) {
// control or bulk
add_to_async_followup_list(halt, p);
} else {
// interrupt
add_to_periodic_followup_list(halt, p);
}
// old halt becomes new transfer, this commits all new qTDs to QH
halt->qtd.token = token;
return true;
}
bool followup_Transfer(Transfer_t *transfer)
{
Serial.print(" Followup ");
Serial.println((uint32_t)transfer, HEX);
if (!(transfer->qtd.token & 0x80)) {
// TODO: check error status
if (transfer->qtd.token & 0x8000) {
// this transfer caused an interrupt
if (transfer->pipe->callback_function) {
// do the callback
(*(transfer->pipe->callback_function))(transfer);
}
}
// do callback function...
Serial.println(" completed");
return true;
}
return false;
}
static void add_to_async_followup_list(Transfer_t *first, Transfer_t *last)
{
last->next_followup = NULL; // always add to end of list
if (async_followup_last == NULL) {
first->prev_followup = NULL;
async_followup_first = first;
} else {
first->prev_followup = async_followup_last;
async_followup_last->next_followup = first;
}
async_followup_last = last;
}
static void remove_from_async_followup_list(Transfer_t *transfer)
{
Transfer_t *next = transfer->next_followup;
Transfer_t *prev = transfer->prev_followup;
if (prev) {
prev->next_followup = next;
} else {
async_followup_first = next;
}
if (next) {
next->prev_followup = prev;
} else {
async_followup_last = prev;
}
}
static void add_to_periodic_followup_list(Transfer_t *first, Transfer_t *last)
{
last->next_followup = NULL; // always add to end of list
if (periodic_followup_last == NULL) {
first->prev_followup = NULL;
periodic_followup_first = first;
} else {
first->prev_followup = periodic_followup_last;
periodic_followup_last->next_followup = first;
}
periodic_followup_last = last;
}
static void remove_from_periodic_followup_list(Transfer_t *transfer)
{
Transfer_t *next = transfer->next_followup;
Transfer_t *prev = transfer->prev_followup;
if (prev) {
prev->next_followup = next;
} else {
periodic_followup_first = next;
}
if (next) {
next->prev_followup = prev;
} else {
periodic_followup_last = prev;
}
}
void print(const Transfer_t *transfer)
{
if (!((uint32_t)transfer & 0xFFFFFFE0)) return;
Serial.print("Transfer @ ");
Serial.println(((uint32_t)transfer & 0xFFFFFFE0), HEX);
Serial.print(" next: ");
Serial.println(transfer->qtd.next, HEX);
Serial.print(" anext: ");
Serial.println(transfer->qtd.alt_next, HEX);
Serial.print(" token: ");
Serial.println(transfer->qtd.token, HEX);
Serial.print(" bufs: ");
for (int i=0; i < 5; i++) {
Serial.print(transfer->qtd.buffer[i], HEX);
if (i < 4) Serial.print(',');
}
Serial.println();
}
void print(const Transfer_t *first, const Transfer_t *last)
{
Serial.print("Transfer Followup List ");
Serial.print((uint32_t)first, HEX);
Serial.print(" to ");
Serial.println((uint32_t)last, HEX);
Serial.println(" forward:");
while (first) {
Serial.print(" ");
Serial.print((uint32_t)first, HEX);
print_token(first->qtd.token);
first = first->next_followup;
}
Serial.println(" backward:");
while (last) {
Serial.print(" ");
Serial.print((uint32_t)last, HEX);
print_token(last->qtd.token);
last = last->prev_followup;
}
}
void print_token(uint32_t token)
{
switch ((token >> 8) & 3) {
case 0:
Serial.print(" OUT ");
Serial.println((token >> 16) & 0x7FFF);
break;
case 1:
Serial.print(" IN ");
Serial.println((token >> 16) & 0x7FFF);
break;
case 2:
Serial.println(" SETUP");
break;
default:
Serial.println(" unknown");
}
}
void print(const Pipe_t *pipe)
{
if (!((uint32_t)pipe & 0xFFFFFFE0)) return;
Serial.print("Pipe ");
if (pipe->type == 0) Serial.print("control");
else if (pipe->type == 1) Serial.print("isochronous");
else if (pipe->type == 2) Serial.print("bulk");
else if (pipe->type == 3) Serial.print("interrupt");
Serial.print(pipe->direction ? " IN" : " OUT");
Serial.print(" @ ");
Serial.println((uint32_t)pipe, HEX);
Serial.print(" horiz link: ");
Serial.println(pipe->qh.horizontal_link, HEX);
Serial.print(" capabilities: ");
Serial.print(pipe->qh.capabilities[0], HEX);
Serial.print(',');
Serial.println(pipe->qh.capabilities[1], HEX);
Serial.println(" overlay:");
Serial.print(" cur: ");
Serial.println(pipe->qh.current, HEX);
Serial.print(" next: ");
Serial.println(pipe->qh.next, HEX);
Serial.print(" anext: ");
Serial.println(pipe->qh.alt_next, HEX);
Serial.print(" token: ");
Serial.println(pipe->qh.token, HEX);
Serial.print(" bufs: ");
for (int i=0; i < 5; i++) {
Serial.print(pipe->qh.buffer[i], HEX);
if (i < 4) Serial.print(',');
}
Serial.println();
const Transfer_t *t = (Transfer_t *)pipe->qh.next;
while (((uint32_t)t & 0xFFFFFFE0)) {
print(t);
t = (Transfer_t *)t->qtd.next;
}
//Serial.print();
}
void print_hexbytes(const void *ptr, uint32_t len)
{
if (ptr == NULL || len == 0) return;
const uint8_t *p = (const uint8_t *)ptr;
do {
if (*p < 16) Serial.print('0');
Serial.print(*p++, HEX);
Serial.print(' ');
} while (--len);
Serial.println();
}
void print(const char *s)
{
Serial.println(s);
delay(10);
}
void print(const char *s, int num)
{
Serial.print(s);
Serial.println(num);
delay(10);
}
// Memory allocation
static Device_t memory_Device[3];
static Pipe_t memory_Pipe[6] __attribute__ ((aligned(64)));
static Transfer_t memory_Transfer[24] __attribute__ ((aligned(64)));
Device_t * free_Device_list = NULL;
Pipe_t * free_Pipe_list = NULL;
Transfer_t * free_Transfer_list = NULL;
void init_Device_Pipe_Transfer_memory(void)
{
Device_t *end_device = memory_Device + sizeof(memory_Device)/sizeof(Device_t);
for (Device_t *device = memory_Device; device < end_device; device++) {
free_Device(device);
}
Pipe_t *end_pipe = memory_Pipe + sizeof(memory_Pipe)/sizeof(Pipe_t);
for (Pipe_t *pipe = memory_Pipe; pipe < end_pipe; pipe++) {
free_Pipe(pipe);
}
Transfer_t *end_transfer = memory_Transfer + sizeof(memory_Transfer)/sizeof(Transfer_t);
for (Transfer_t *transfer = memory_Transfer; transfer < end_transfer; transfer++) {
free_Transfer(transfer);
}
}
Device_t * allocate_Device(void)
{
Device_t *device = free_Device_list;
if (device) free_Device_list = *(Device_t **)device;
return device;
}
void free_Device(Device_t *device)
{
*(Device_t **)device = free_Device_list;
free_Device_list = device;
}
Pipe_t * allocate_Pipe(void)
{
Pipe_t *pipe = free_Pipe_list;
if (pipe) free_Pipe_list = *(Pipe_t **)pipe;
return pipe;
}
void free_Pipe(Pipe_t *pipe)
{
*(Pipe_t **)pipe = free_Pipe_list;
free_Pipe_list = pipe;
}
Transfer_t * allocate_Transfer(void)
{
Transfer_t *transfer = free_Transfer_list;
if (transfer) free_Transfer_list = *(Transfer_t **)transfer;
return transfer;
}
void free_Transfer(Transfer_t *transfer)
{
*(Transfer_t **)transfer = free_Transfer_list;
free_Transfer_list = transfer;
}

92
memory.cpp Normal file
View File

@ -0,0 +1,92 @@
/* USB EHCI Host for Teensy 3.6
* Copyright 2017 Paul Stoffregen (paul@pjrc.com)
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <Arduino.h>
#include "USBHost.h"
// Memory allocation
static Device_t memory_Device[3];
static Pipe_t memory_Pipe[6] __attribute__ ((aligned(64)));
static Transfer_t memory_Transfer[24] __attribute__ ((aligned(64)));
Device_t * free_Device_list = NULL;
Pipe_t * free_Pipe_list = NULL;
Transfer_t * free_Transfer_list = NULL;
void init_Device_Pipe_Transfer_memory(void)
{
Device_t *end_device = memory_Device + sizeof(memory_Device)/sizeof(Device_t);
for (Device_t *device = memory_Device; device < end_device; device++) {
free_Device(device);
}
Pipe_t *end_pipe = memory_Pipe + sizeof(memory_Pipe)/sizeof(Pipe_t);
for (Pipe_t *pipe = memory_Pipe; pipe < end_pipe; pipe++) {
free_Pipe(pipe);
}
Transfer_t *end_transfer = memory_Transfer + sizeof(memory_Transfer)/sizeof(Transfer_t);
for (Transfer_t *transfer = memory_Transfer; transfer < end_transfer; transfer++) {
free_Transfer(transfer);
}
}
Device_t * allocate_Device(void)
{
Device_t *device = free_Device_list;
if (device) free_Device_list = *(Device_t **)device;
return device;
}
void free_Device(Device_t *device)
{
*(Device_t **)device = free_Device_list;
free_Device_list = device;
}
Pipe_t * allocate_Pipe(void)
{
Pipe_t *pipe = free_Pipe_list;
if (pipe) free_Pipe_list = *(Pipe_t **)pipe;
return pipe;
}
void free_Pipe(Pipe_t *pipe)
{
*(Pipe_t **)pipe = free_Pipe_list;
free_Pipe_list = pipe;
}
Transfer_t * allocate_Transfer(void)
{
Transfer_t *transfer = free_Transfer_list;
if (transfer) free_Transfer_list = *(Transfer_t **)transfer;
return transfer;
}
void free_Transfer(Transfer_t *transfer)
{
*(Transfer_t **)transfer = free_Transfer_list;
free_Transfer_list = transfer;
}

154
print.cpp Normal file
View File

@ -0,0 +1,154 @@
/* USB EHCI Host for Teensy 3.6
* Copyright 2017 Paul Stoffregen (paul@pjrc.com)
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <Arduino.h>
#include "USBHost.h"
void print(const Transfer_t *transfer)
{
if (!((uint32_t)transfer & 0xFFFFFFE0)) return;
Serial.print("Transfer @ ");
Serial.println(((uint32_t)transfer & 0xFFFFFFE0), HEX);
Serial.print(" next: ");
Serial.println(transfer->qtd.next, HEX);
Serial.print(" anext: ");
Serial.println(transfer->qtd.alt_next, HEX);
Serial.print(" token: ");
Serial.println(transfer->qtd.token, HEX);
Serial.print(" bufs: ");
for (int i=0; i < 5; i++) {
Serial.print(transfer->qtd.buffer[i], HEX);
if (i < 4) Serial.print(',');
}
Serial.println();
}
void print(const Transfer_t *first, const Transfer_t *last)
{
Serial.print("Transfer Followup List ");
Serial.print((uint32_t)first, HEX);
Serial.print(" to ");
Serial.println((uint32_t)last, HEX);
Serial.println(" forward:");
while (first) {
Serial.print(" ");
Serial.print((uint32_t)first, HEX);
print_token(first->qtd.token);
first = first->next_followup;
}
Serial.println(" backward:");
while (last) {
Serial.print(" ");
Serial.print((uint32_t)last, HEX);
print_token(last->qtd.token);
last = last->prev_followup;
}
}
void print_token(uint32_t token)
{
switch ((token >> 8) & 3) {
case 0:
Serial.print(" OUT ");
Serial.println((token >> 16) & 0x7FFF);
break;
case 1:
Serial.print(" IN ");
Serial.println((token >> 16) & 0x7FFF);
break;
case 2:
Serial.println(" SETUP");
break;
default:
Serial.println(" unknown");
}
}
void print(const Pipe_t *pipe)
{
if (!((uint32_t)pipe & 0xFFFFFFE0)) return;
Serial.print("Pipe ");
if (pipe->type == 0) Serial.print("control");
else if (pipe->type == 1) Serial.print("isochronous");
else if (pipe->type == 2) Serial.print("bulk");
else if (pipe->type == 3) Serial.print("interrupt");
Serial.print(pipe->direction ? " IN" : " OUT");
Serial.print(" @ ");
Serial.println((uint32_t)pipe, HEX);
Serial.print(" horiz link: ");
Serial.println(pipe->qh.horizontal_link, HEX);
Serial.print(" capabilities: ");
Serial.print(pipe->qh.capabilities[0], HEX);
Serial.print(',');
Serial.println(pipe->qh.capabilities[1], HEX);
Serial.println(" overlay:");
Serial.print(" cur: ");
Serial.println(pipe->qh.current, HEX);
Serial.print(" next: ");
Serial.println(pipe->qh.next, HEX);
Serial.print(" anext: ");
Serial.println(pipe->qh.alt_next, HEX);
Serial.print(" token: ");
Serial.println(pipe->qh.token, HEX);
Serial.print(" bufs: ");
for (int i=0; i < 5; i++) {
Serial.print(pipe->qh.buffer[i], HEX);
if (i < 4) Serial.print(',');
}
Serial.println();
const Transfer_t *t = (Transfer_t *)pipe->qh.next;
while (((uint32_t)t & 0xFFFFFFE0)) {
print(t);
t = (Transfer_t *)t->qtd.next;
}
//Serial.print();
}
void print_hexbytes(const void *ptr, uint32_t len)
{
if (ptr == NULL || len == 0) return;
const uint8_t *p = (const uint8_t *)ptr;
do {
if (*p < 16) Serial.print('0');
Serial.print(*p++, HEX);
Serial.print(' ');
} while (--len);
Serial.println();
}
void print(const char *s)
{
Serial.println(s);
delay(10);
}
void print(const char *s, int num)
{
Serial.print(s);
Serial.println(num);
delay(10);
}