1
0
mirror of https://github.com/gdsports/USBHost_t36 synced 2024-11-14 05:05:09 -05:00
USBHost_t36/USBHost_t36.h

778 lines
28 KiB
C
Raw Normal View History

/* USB EHCI Host for Teensy 3.6
* Copyright 2017 Paul Stoffregen (paul@pjrc.com)
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#ifndef USB_HOST_TEENSY36_
#define USB_HOST_TEENSY36_
#include <stdint.h>
2017-03-07 10:40:06 -05:00
#if !defined(__MK66FX1M0__)
#error "USBHost_t36 only works with Teensy 3.6. Please select it in Tools > Boards"
#endif
// Dear inquisitive reader, USB is a complex protocol defined with
// very specific terminology. To have any chance of understand this
// source code, you absolutely must have solid knowledge of specific
// USB terms such as host, device, endpoint, pipe, enumeration....
// You really must also have at least a basic knowledge of the
// different USB transfers: control, bulk, interrupt, isochronous.
//
// The USB 2.0 specification explains these in chapter 4 (pages 15
// to 24), and provides more detail in the first part of chapter 5
// (pages 25 to 55). The USB spec is published for free at
// www.usb.org. Here is a convenient link to just the main PDF:
//
// https://www.pjrc.com/teensy/beta/usb20.pdf
//
// This is a huge file, but chapter 4 is short and easy to read.
// If you're not familiar with the USB lingo, please do yourself
// a favor by reading at least chapter 4 to get up to speed on the
// meaning of these important USB concepts and terminology.
//
// If you wish to ask questions (which belong on the forum, not
// github issues) or discuss development of this library, you
// ABSOLUTELY MUST know the basic USB terminology from chapter 4.
// Please repect other people's valuable time & effort by making
// your best effort to read chapter 4 before asking USB questions!
2017-03-07 10:22:57 -05:00
// #define USBHOST_PRINT_DEBUG
2017-02-11 06:34:36 -05:00
/************************************************/
2017-03-06 00:33:29 -05:00
/* Data Types */
2017-02-11 06:34:36 -05:00
/************************************************/
2017-03-06 07:15:23 -05:00
// These 6 types are the key to understanding how this USB Host
// library really works.
2017-03-06 00:33:29 -05:00
// USBHost is a static class controlling the hardware.
// All common USB functionality is implemented here.
2017-02-11 06:34:36 -05:00
class USBHost;
2017-03-06 00:33:29 -05:00
// These 3 structures represent the actual USB entities
// USBHost manipulates. One Device_t is created for
// each active USB device. One Pipe_t is create for
// each endpoint. Transfer_t structures are created
// when any data transfer is added to the EHCI work
// queues, and then returned to the free pool after the
// data transfer completes and the driver has processed
// the results.
2017-02-27 05:22:02 -05:00
typedef struct Device_struct Device_t;
typedef struct Pipe_struct Pipe_t;
typedef struct Transfer_struct Transfer_t;
2017-03-06 00:33:29 -05:00
// All USB device drivers inherit use these classes.
// Drivers build user-visible functionality on top
// of these classes, which receive USB events from
// USBHost.
class USBDriver;
class USBDriverTimer;
/************************************************/
/* Data Structure Definitions */
/************************************************/
2017-02-11 06:34:36 -05:00
// setup_t holds the 8 byte USB SETUP packet data.
// These unions & structs allow convenient access to
// the setup fields.
typedef union {
struct {
union {
struct {
uint8_t bmRequestType;
uint8_t bRequest;
};
uint16_t wRequestAndType;
};
uint16_t wValue;
uint16_t wIndex;
uint16_t wLength;
};
struct {
uint32_t word1;
uint32_t word2;
};
} setup_t;
2017-02-11 06:34:36 -05:00
// Device_t holds all the information about a USB device
struct Device_struct {
Pipe_t *control_pipe;
Pipe_t *data_pipes;
Device_t *next;
2017-02-12 04:57:49 -05:00
USBDriver *drivers;
uint8_t speed; // 0=12, 1=1.5, 2=480 Mbit/sec
uint8_t address;
uint8_t hub_address;
uint8_t hub_port;
uint8_t enum_state;
uint8_t bDeviceClass;
uint8_t bDeviceSubClass;
uint8_t bDeviceProtocol;
uint8_t bmAttributes;
uint8_t bMaxPower;
uint16_t idVendor;
uint16_t idProduct;
uint16_t LanguageID;
};
2017-02-11 06:34:36 -05:00
// Pipe_t holes all information about each USB endpoint/pipe
// The first half is an EHCI QH structure for the pipe.
struct Pipe_struct {
// Queue Head (QH), EHCI page 46-50
struct { // must be aligned to 32 byte boundary
volatile uint32_t horizontal_link;
volatile uint32_t capabilities[2];
volatile uint32_t current;
volatile uint32_t next;
volatile uint32_t alt_next;
volatile uint32_t token;
volatile uint32_t buffer[5];
} qh;
Device_t *device;
uint8_t type; // 0=control, 1=isochronous, 2=bulk, 3=interrupt
2017-02-07 07:04:08 -05:00
uint8_t direction; // 0=out, 1=in (changes for control, others fixed)
2017-03-06 00:33:29 -05:00
uint8_t start_mask;
uint8_t complete_mask;
Pipe_t *next;
2017-02-07 07:04:08 -05:00
void (*callback_function)(const Transfer_t *);
uint16_t periodic_interval;
2017-03-06 00:33:29 -05:00
uint16_t periodic_offset;
uint32_t unused1;
uint32_t unused2;
uint32_t unused3;
uint32_t unused4;
uint32_t unused5;
uint32_t unused6;
uint32_t unused7;
};
2017-02-11 06:34:36 -05:00
// Transfer_t represents a single transaction on the USB bus.
// The first portion is an EHCI qTD structure. Transfer_t are
// allocated as-needed from a memory pool, loaded with pointers
// to the actual data buffers, linked into a followup list,
// and placed on ECHI Queue Heads. When the ECHI interrupt
// occurs, the followup lists are used to find the Transfer_t
// in memory. Callbacks are made, and then the Transfer_t are
// returned to the memory pool.
struct Transfer_struct {
// Queue Element Transfer Descriptor (qTD), EHCI pg 40-45
struct { // must be aligned to 32 byte boundary
volatile uint32_t next;
volatile uint32_t alt_next;
volatile uint32_t token;
volatile uint32_t buffer[5];
} qtd;
2017-02-11 06:34:36 -05:00
// Linked list of queued, not-yet-completed transfers
2017-02-05 12:46:07 -05:00
Transfer_t *next_followup;
Transfer_t *prev_followup;
Pipe_t *pipe;
2017-02-11 06:34:36 -05:00
// Data to be used by callback function. When a group
// of Transfer_t are created, these fields and the
// interrupt-on-complete bit in the qTD token are only
// set in the last Transfer_t of the list.
void *buffer;
uint32_t length;
setup_t setup;
USBDriver *driver;
};
2017-02-27 05:22:02 -05:00
2017-02-11 06:34:36 -05:00
/************************************************/
/* Main USB EHCI Controller */
/************************************************/
2017-02-11 05:30:52 -05:00
class USBHost {
public:
static void begin();
2017-03-06 07:15:23 -05:00
static void Task();
2017-02-11 05:30:52 -05:00
protected:
2017-02-11 06:34:36 -05:00
static Pipe_t * new_Pipe(Device_t *dev, uint32_t type, uint32_t endpoint,
uint32_t direction, uint32_t maxlen, uint32_t interval=0);
static bool queue_Control_Transfer(Device_t *dev, setup_t *setup,
void *buf, USBDriver *driver);
static bool queue_Data_Transfer(Pipe_t *pipe, void *buffer,
uint32_t len, USBDriver *driver);
2017-02-11 06:34:36 -05:00
static Device_t * new_Device(uint32_t speed, uint32_t hub_addr, uint32_t hub_port);
static void disconnect_Device(Device_t *dev);
2017-02-11 05:30:52 -05:00
static void enumeration(const Transfer_t *transfer);
2017-02-12 04:57:49 -05:00
static void driver_ready_for_device(USBDriver *driver);
static void contribute_Devices(Device_t *devices, uint32_t num);
static void contribute_Pipes(Pipe_t *pipes, uint32_t num);
static void contribute_Transfers(Transfer_t *transfers, uint32_t num);
2017-03-03 07:58:10 -05:00
static volatile bool enumeration_busy;
2017-02-11 06:34:36 -05:00
private:
2017-02-11 05:30:52 -05:00
static void isr();
static void claim_drivers(Device_t *dev);
static uint32_t assign_address(void);
static bool queue_Transfer(Pipe_t *pipe, Transfer_t *transfer);
2017-02-11 06:34:36 -05:00
static void init_Device_Pipe_Transfer_memory(void);
static Device_t * allocate_Device(void);
static void delete_Pipe(Pipe_t *pipe);
2017-02-11 06:34:36 -05:00
static void free_Device(Device_t *q);
static Pipe_t * allocate_Pipe(void);
static void free_Pipe(Pipe_t *q);
static Transfer_t * allocate_Transfer(void);
static void free_Transfer(Transfer_t *q);
static bool allocate_interrupt_pipe_bandwidth(Pipe_t *pipe,
uint32_t maxlen, uint32_t interval);
static void add_qh_to_periodic_schedule(Pipe_t *pipe);
static bool followup_Transfer(Transfer_t *transfer);
static void followup_Error(void);
2017-02-11 06:34:36 -05:00
protected:
#ifdef USBHOST_PRINT_DEBUG
2017-02-11 06:34:36 -05:00
static void print(const Transfer_t *transfer);
static void print(const Transfer_t *first, const Transfer_t *last);
static void print_token(uint32_t token);
static void print(const Pipe_t *pipe);
static void print_driverlist(const char *name, const USBDriver *driver);
static void print_qh_list(const Pipe_t *list);
2017-02-11 06:34:36 -05:00
static void print_hexbytes(const void *ptr, uint32_t len);
static void print(const char *s) { Serial.print(s); }
static void print(int n) { Serial.print(n); }
static void print(unsigned int n) { Serial.print(n); }
static void print(long n) { Serial.print(n); }
static void print(unsigned long n) { Serial.print(n); }
static void println(const char *s) { Serial.println(s); }
static void println(int n) { Serial.println(n); }
static void println(unsigned int n) { Serial.println(n); }
static void println(long n) { Serial.println(n); }
static void println(unsigned long n) { Serial.println(n); }
static void println() { Serial.println(); }
static void print(uint32_t n, uint8_t b) { Serial.print(n, b); }
static void println(uint32_t n, uint8_t b) { Serial.println(n, b); }
static void print(const char *s, int n, uint8_t b = DEC) {
Serial.print(s); Serial.print(n, b); }
static void print(const char *s, unsigned int n, uint8_t b = DEC) {
Serial.print(s); Serial.print(n, b); }
static void print(const char *s, long n, uint8_t b = DEC) {
Serial.print(s); Serial.print(n, b); }
static void print(const char *s, unsigned long n, uint8_t b = DEC) {
Serial.print(s); Serial.print(n, b); }
static void println(const char *s, int n, uint8_t b = DEC) {
Serial.print(s); Serial.println(n, b); }
static void println(const char *s, unsigned int n, uint8_t b = DEC) {
Serial.print(s); Serial.println(n, b); }
static void println(const char *s, long n, uint8_t b = DEC) {
Serial.print(s); Serial.println(n, b); }
static void println(const char *s, unsigned long n, uint8_t b = DEC) {
Serial.print(s); Serial.println(n, b); }
#else
static void print(const Transfer_t *transfer) {}
static void print(const Transfer_t *first, const Transfer_t *last) {}
static void print_token(uint32_t token) {}
static void print(const Pipe_t *pipe) {}
static void print_driverlist(const char *name, const USBDriver *driver) {}
static void print_qh_list(const Pipe_t *list) {}
static void print_hexbytes(const void *ptr, uint32_t len) {}
static void print(const char *s) {}
static void print(int n) {}
static void print(unsigned int n) {}
static void print(long n) {}
static void print(unsigned long n) {}
static void println(const char *s) {}
static void println(int n) {}
static void println(unsigned int n) {}
static void println(long n) {}
static void println(unsigned long n) {}
static void println() {}
static void print(uint32_t n, uint8_t b) {}
static void println(uint32_t n, uint8_t b) {}
static void print(const char *s, int n, uint8_t b = DEC) {}
static void print(const char *s, unsigned int n, uint8_t b = DEC) {}
static void print(const char *s, long n, uint8_t b = DEC) {}
static void print(const char *s, unsigned long n, uint8_t b = DEC) {}
static void println(const char *s, int n, uint8_t b = DEC) {}
static void println(const char *s, unsigned int n, uint8_t b = DEC) {}
static void println(const char *s, long n, uint8_t b = DEC) {}
static void println(const char *s, unsigned long n, uint8_t b = DEC) {}
#endif
2017-02-11 16:44:23 -05:00
static void mk_setup(setup_t &s, uint32_t bmRequestType, uint32_t bRequest,
uint32_t wValue, uint32_t wIndex, uint32_t wLength) {
s.word1 = bmRequestType | (bRequest << 8) | (wValue << 16);
s.word2 = wIndex | (wLength << 16);
}
2017-02-11 05:30:52 -05:00
};
2017-02-11 06:34:36 -05:00
/************************************************/
2017-02-12 04:57:49 -05:00
/* USB Device Driver Common Base Class */
2017-02-11 06:34:36 -05:00
/************************************************/
2017-02-12 04:57:49 -05:00
// All USB device drivers inherit from this base class.
class USBDriver : public USBHost {
2017-02-27 05:22:02 -05:00
public:
// TODO: user-level functions
// check if device is bound/active/online
// query vid, pid
// query string: manufacturer, product, serial number
protected:
2017-02-12 04:57:49 -05:00
USBDriver() : next(NULL), device(NULL) {}
// Check if a driver wishes to claim a device or interface or group
// of interfaces within a device. When this function returns true,
// the driver is considered bound or loaded for that device. When
// new devices are detected, enumeration.cpp calls this function on
// all unbound driver objects, to give them an opportunity to bind
// to the new device.
// device has its vid&pid, class/subclass fields initialized
// type is 0 for device level, 1 for interface level, 2 for IAD
// descriptors points to the specific descriptor data
virtual bool claim(Device_t *device, int type, const uint8_t *descriptors, uint32_t len);
// When an unknown (not chapter 9) control transfer completes, this
// function is called for all drivers bound to the device. Return
// true means this driver originated this control transfer, so no
// more drivers need to be offered an opportunity to process it.
// This function is optional, only needed if the driver uses control
// transfers and wishes to be notified when they complete.
virtual void control(const Transfer_t *transfer) { }
2017-02-27 05:22:02 -05:00
// When any of the USBDriverTimer objects a driver creates generates
// a timer event, this function is called.
2017-02-27 07:17:43 -05:00
virtual void timer_event(USBDriverTimer *whichTimer) { }
2017-02-27 05:22:02 -05:00
2017-03-06 07:15:23 -05:00
// When the user calls USBHost::Task, this Task function for all
// active drivers is called, so they may update state and/or call
// any attached user callback functions.
virtual void Task() { }
// When a device disconnects from the USB, this function is called.
// The driver must free all resources it allocated and update any
// internal state necessary to deal with the possibility of user
// code continuing to call its API. However, pipes and transfers
// are the handled by lower layers, so device drivers do not free
// pipes they created or cancel transfers they had in progress.
virtual void disconnect();
// Drivers are managed by this single-linked list. All inactive
// (not bound to any device) drivers are linked from
2017-02-12 15:03:26 -05:00
// available_drivers in enumeration.cpp. When bound to a device,
// drivers are linked from that Device_t drivers list.
2017-02-12 04:57:49 -05:00
USBDriver *next;
// The device this object instance is bound to. In words, this
// is the specific device this driver is using. When not bound
// to any device, this must be NULL. Drivers may set this to
// any non-NULL value if they are in a state where they do not
// wish to claim any device or interface (eg, if getting data
// from the HID parser).
Device_t *device;
friend class USBHost;
};
2017-02-27 05:22:02 -05:00
// Device drivers may create these timer objects to schedule a timer call
class USBDriverTimer {
public:
USBDriverTimer() { }
USBDriverTimer(USBDriver *d) : driver(d) { }
void init(USBDriver *d) { driver = d; };
void start(uint32_t microseconds);
void *pointer;
uint32_t integer;
2017-02-27 07:17:43 -05:00
uint32_t started_micros; // testing only
2017-02-27 05:22:02 -05:00
private:
USBDriver *driver;
uint32_t usec;
USBDriverTimer *next;
USBDriverTimer *prev;
friend class USBHost;
};
2017-02-12 04:57:49 -05:00
2017-09-09 14:17:50 -04:00
// Device drivers may inherit from this base class, if they wish to receive
// HID input data fully decoded by the USBHIDParser driver
class USBHIDInput {
private:
virtual bool claim_collection(Device_t *dev, uint32_t topusage);
2017-09-10 06:48:10 -04:00
virtual void hid_input_begin(uint32_t topusage, uint32_t type, int lgmin, int lgmax);
2017-09-09 14:17:50 -04:00
virtual void hid_input_data(uint32_t usage, int32_t value);
virtual void hid_input_end();
virtual void disconnect_collection(Device_t *dev);
2017-09-10 06:48:10 -04:00
void add_to_list();
2017-09-09 14:17:50 -04:00
USBHIDInput *next;
friend class USBHIDParser;
};
2017-02-12 04:57:49 -05:00
/************************************************/
/* USB Device Drivers */
/************************************************/
class USBHub : public USBDriver {
public:
USBHub(USBHost &host) : debouncetimer(this), resettimer(this) { init(); }
USBHub(USBHost *host) : debouncetimer(this), resettimer(this) { init(); }
// Hubs with more more than 7 ports are built from two tiers of hubs
// using 4 or 7 port hub chips. While the USB spec seems to allow
// hubs to have up to 255 ports, in practice all hub chips on the
// market are only 2, 3, 4 or 7 ports.
enum { MAXPORTS = 7 };
typedef uint8_t portbitmask_t;
enum {
PORT_OFF = 0,
PORT_DISCONNECT = 1,
PORT_DEBOUNCE1 = 2,
PORT_DEBOUNCE2 = 3,
PORT_DEBOUNCE3 = 4,
PORT_DEBOUNCE4 = 5,
PORT_DEBOUNCE5 = 6,
PORT_RESET = 7,
PORT_RECOVERY = 8,
PORT_ACTIVE = 9
};
protected:
2017-09-09 14:17:50 -04:00
virtual bool claim(Device_t *dev, int type, const uint8_t *descriptors, uint32_t len);
virtual void control(const Transfer_t *transfer);
2017-02-27 07:17:43 -05:00
virtual void timer_event(USBDriverTimer *whichTimer);
virtual void disconnect();
void init();
bool can_send_control_now();
void send_poweron(uint32_t port);
void send_getstatus(uint32_t port);
void send_clearstatus_connect(uint32_t port);
void send_clearstatus_enable(uint32_t port);
void send_clearstatus_suspend(uint32_t port);
void send_clearstatus_overcurrent(uint32_t port);
void send_clearstatus_reset(uint32_t port);
void send_setreset(uint32_t port);
static void callback(const Transfer_t *transfer);
void status_change(const Transfer_t *transfer);
void new_port_status(uint32_t port, uint32_t status);
void start_debounce_timer(uint32_t port);
void stop_debounce_timer(uint32_t port);
private:
Device_t mydevices[MAXPORTS];
Pipe_t mypipes[2] __attribute__ ((aligned(32)));
Transfer_t mytransfers[4] __attribute__ ((aligned(32)));
USBDriverTimer debouncetimer;
2017-03-01 15:08:47 -05:00
USBDriverTimer resettimer;
setup_t setup;
Pipe_t *changepipe;
2017-03-01 16:29:00 -05:00
Device_t *devicelist[MAXPORTS];
2017-03-01 15:08:47 -05:00
uint32_t changebits;
uint32_t statusbits;
2017-03-01 16:29:00 -05:00
uint8_t hub_desc[16];
uint8_t endpoint;
uint8_t interval;
uint8_t numports;
uint8_t characteristics;
uint8_t powertime;
uint8_t sending_control_transfer;
uint8_t port_doing_reset;
uint8_t port_doing_reset_speed;
uint8_t portstate[MAXPORTS];
portbitmask_t send_pending_poweron;
portbitmask_t send_pending_getstatus;
portbitmask_t send_pending_clearstatus_connect;
portbitmask_t send_pending_clearstatus_enable;
portbitmask_t send_pending_clearstatus_suspend;
portbitmask_t send_pending_clearstatus_overcurrent;
portbitmask_t send_pending_clearstatus_reset;
portbitmask_t send_pending_setreset;
2017-03-01 15:08:47 -05:00
portbitmask_t debounce_in_use;
static volatile bool reset_busy;
};
2017-09-09 14:17:50 -04:00
class USBHIDParser : public USBDriver {
public:
USBHIDParser(USBHost &host) { init(); }
2017-09-10 06:48:10 -04:00
static void driver_ready_for_hid_collection(USBHIDInput *driver);
2017-09-09 14:17:50 -04:00
protected:
enum { TOPUSAGE_LIST_LEN = 4 };
enum { USAGE_LIST_LEN = 12 };
virtual bool claim(Device_t *device, int type, const uint8_t *descriptors, uint32_t len);
virtual void control(const Transfer_t *transfer);
virtual void disconnect();
static void in_callback(const Transfer_t *transfer);
static void out_callback(const Transfer_t *transfer);
void in_data(const Transfer_t *transfer);
void out_data(const Transfer_t *transfer);
bool check_if_using_report_id();
void parse();
USBHIDInput * find_driver(uint32_t topusage);
void parse(uint16_t type_and_report_id, const uint8_t *data, uint32_t len);
void init();
private:
Pipe_t *in_pipe;
Pipe_t *out_pipe;
2017-09-10 06:48:10 -04:00
static USBHIDInput *available_hid_drivers_list;
2017-09-09 14:17:50 -04:00
//uint32_t topusage_list[TOPUSAGE_LIST_LEN];
USBHIDInput *topusage_drivers[TOPUSAGE_LIST_LEN];
uint16_t in_size;
uint16_t out_size;
setup_t setup;
uint8_t descriptor[256];
uint8_t report[64];
uint16_t descsize;
bool use_report_id;
Pipe_t mypipes[3] __attribute__ ((aligned(32)));
Transfer_t mytransfers[4] __attribute__ ((aligned(32)));
};
class KeyboardController : public USBDriver /* , public USBHIDInput */ {
2017-02-18 09:09:28 -05:00
public:
KeyboardController(USBHost &host) { init(); }
KeyboardController(USBHost *host) { init(); }
2017-03-07 10:22:57 -05:00
int available();
int read();
uint16_t getKey() { return keyCode; }
uint8_t getModifiers() { return modifiers; }
uint8_t getOemKey() { return keyOEM; }
void attachPress(void (*f)(int unicode)) { keyPressedFunction = f; }
void attachRelease(void (*f)(int unicode)) { keyReleasedFunction = f; }
2017-02-18 09:09:28 -05:00
protected:
virtual bool claim(Device_t *device, int type, const uint8_t *descriptors, uint32_t len);
2017-03-03 09:13:37 -05:00
virtual void control(const Transfer_t *transfer);
2017-02-18 09:09:28 -05:00
virtual void disconnect();
static void callback(const Transfer_t *transfer);
void new_data(const Transfer_t *transfer);
void init();
2017-02-18 09:09:28 -05:00
private:
2017-03-07 10:22:57 -05:00
void update();
uint16_t convert_to_unicode(uint32_t mod, uint32_t key);
void key_press(uint32_t mod, uint32_t key);
void key_release(uint32_t mod, uint32_t key);
void (*keyPressedFunction)(int unicode);
void (*keyReleasedFunction)(int unicode);
2017-02-18 09:09:28 -05:00
Pipe_t *datapipe;
2017-03-03 09:13:37 -05:00
setup_t setup;
2017-02-18 09:09:28 -05:00
uint8_t report[8];
2017-03-07 10:22:57 -05:00
uint16_t keyCode;
uint8_t modifiers;
uint8_t keyOEM;
uint8_t prev_report[8];
Pipe_t mypipes[2] __attribute__ ((aligned(32)));
Transfer_t mytransfers[4] __attribute__ ((aligned(32)));
2017-02-18 09:09:28 -05:00
};
2017-02-20 09:33:13 -05:00
class MIDIDevice : public USBDriver {
public:
2017-03-07 08:42:29 -05:00
enum { SYSEX_MAX_LEN = 60 };
MIDIDevice(USBHost &host) { init(); }
MIDIDevice(USBHost *host) { init(); }
2017-03-07 08:42:29 -05:00
bool read(uint8_t channel=0, uint8_t cable=0);
uint8_t getType(void) {
return msg_type;
};
uint8_t getChannel(void) {
return msg_channel;
};
uint8_t getData1(void) {
return msg_data1;
};
uint8_t getData2(void) {
return msg_data2;
};
void setHandleNoteOff(void (*f)(uint8_t channel, uint8_t note, uint8_t velocity)) {
handleNoteOff = f;
};
void setHandleNoteOn(void (*f)(uint8_t channel, uint8_t note, uint8_t velocity)) {
handleNoteOn = f;
};
void setHandleVelocityChange(void (*f)(uint8_t channel, uint8_t note, uint8_t velocity)) {
handleVelocityChange = f;
};
void setHandleControlChange(void (*f)(uint8_t channel, uint8_t control, uint8_t value)) {
handleControlChange = f;
};
void setHandleProgramChange(void (*f)(uint8_t channel, uint8_t program)) {
handleProgramChange = f;
};
void setHandleAfterTouch(void (*f)(uint8_t channel, uint8_t pressure)) {
handleAfterTouch = f;
};
void setHandlePitchChange(void (*f)(uint8_t channel, int pitch)) {
handlePitchChange = f;
};
void setHandleSysEx(void (*f)(const uint8_t *data, uint16_t length, bool complete)) {
handleSysEx = (void (*)(const uint8_t *, uint16_t, uint8_t))f;
}
void setHandleRealTimeSystem(void (*f)(uint8_t realtimebyte)) {
handleRealTimeSystem = f;
};
void setHandleTimeCodeQuarterFrame(void (*f)(uint16_t data)) {
handleTimeCodeQuarterFrame = f;
};
void sendNoteOff(uint32_t note, uint32_t velocity, uint32_t channel) {
write_packed(0x8008 | (((channel - 1) & 0x0F) << 8)
| ((note & 0x7F) << 16) | ((velocity & 0x7F) << 24));
}
void sendNoteOn(uint32_t note, uint32_t velocity, uint32_t channel) {
write_packed(0x9009 | (((channel - 1) & 0x0F) << 8)
| ((note & 0x7F) << 16) | ((velocity & 0x7F) << 24));
}
void sendPolyPressure(uint32_t note, uint32_t pressure, uint32_t channel) {
write_packed(0xA00A | (((channel - 1) & 0x0F) << 8)
| ((note & 0x7F) << 16) | ((pressure & 0x7F) << 24));
}
void sendControlChange(uint32_t control, uint32_t value, uint32_t channel) {
write_packed(0xB00B | (((channel - 1) & 0x0F) << 8)
| ((control & 0x7F) << 16) | ((value & 0x7F) << 24));
}
void sendProgramChange(uint32_t program, uint32_t channel) {
write_packed(0xC00C | (((channel - 1) & 0x0F) << 8)
| ((program & 0x7F) << 16));
}
void sendAfterTouch(uint32_t pressure, uint32_t channel) {
write_packed(0xD00D | (((channel - 1) & 0x0F) << 8)
| ((pressure & 0x7F) << 16));
}
void sendPitchBend(uint32_t value, uint32_t channel) {
write_packed(0xE00E | (((channel - 1) & 0x0F) << 8)
| ((value & 0x7F) << 16) | ((value & 0x3F80) << 17));
}
void sendSysEx(uint32_t length, const void *data);
void sendRealTime(uint32_t type) {
switch (type) {
case 0xF8: // Clock
case 0xFA: // Start
case 0xFC: // Stop
case 0xFB: // Continue
case 0xFE: // ActiveSensing
case 0xFF: // SystemReset
write_packed((type << 8) | 0x0F);
break;
default: // Invalid Real Time marker
break;
}
}
void sendTimeCodeQuarterFrame(uint32_t type, uint32_t value) {
uint32_t data = ( ((type & 0x07) << 4) | (value & 0x0F) );
sendTimeCodeQuarterFrame(data);
}
void sendTimeCodeQuarterFrame(uint32_t data) {
write_packed(0xF108 | ((data & 0x7F) << 16));
}
2017-02-20 09:33:13 -05:00
protected:
virtual bool claim(Device_t *device, int type, const uint8_t *descriptors, uint32_t len);
virtual void disconnect();
static void rx_callback(const Transfer_t *transfer);
static void tx_callback(const Transfer_t *transfer);
void rx_data(const Transfer_t *transfer);
void tx_data(const Transfer_t *transfer);
void init();
2017-03-07 08:42:29 -05:00
void write_packed(uint32_t data);
void sysex_byte(uint8_t b);
2017-02-20 09:33:13 -05:00
private:
Pipe_t *rxpipe;
Pipe_t *txpipe;
2017-03-07 08:42:29 -05:00
enum { MAX_PACKET_SIZE = 64 };
enum { RX_QUEUE_SIZE = 80 }; // must be more than MAX_PACKET_SIZE/4
uint32_t rx_buffer[MAX_PACKET_SIZE/4];
uint32_t tx_buffer[MAX_PACKET_SIZE/4];
2017-02-20 09:33:13 -05:00
uint16_t rx_size;
uint16_t tx_size;
2017-03-07 08:42:29 -05:00
uint32_t rx_queue[RX_QUEUE_SIZE];
bool rx_packet_queued;
uint16_t rx_head;
uint16_t rx_tail;
uint8_t rx_ep;
uint8_t tx_ep;
uint8_t msg_channel;
uint8_t msg_type;
uint8_t msg_data1;
uint8_t msg_data2;
uint8_t msg_sysex[SYSEX_MAX_LEN];
uint8_t msg_sysex_len;
void (*handleNoteOff)(uint8_t ch, uint8_t note, uint8_t vel);
void (*handleNoteOn)(uint8_t ch, uint8_t note, uint8_t vel);
void (*handleVelocityChange)(uint8_t ch, uint8_t note, uint8_t vel);
void (*handleControlChange)(uint8_t ch, uint8_t control, uint8_t value);
void (*handleProgramChange)(uint8_t ch, uint8_t program);
void (*handleAfterTouch)(uint8_t ch, uint8_t pressure);
void (*handlePitchChange)(uint8_t ch, int pitch);
void (*handleSysEx)(const uint8_t *data, uint16_t length, uint8_t complete);
void (*handleRealTimeSystem)(uint8_t rtb);
void (*handleTimeCodeQuarterFrame)(uint16_t data);
Pipe_t mypipes[3] __attribute__ ((aligned(32)));
Transfer_t mytransfers[7] __attribute__ ((aligned(32)));
2017-02-20 09:33:13 -05:00
};
2017-09-10 06:48:10 -04:00
#if 1
class MouseController : public USBHIDInput {
public:
MouseController(USBHost &host) { USBHIDParser::driver_ready_for_hid_collection(this); }
bool available() { return mouseEvent; }
void mouseDataClear();
uint8_t getButtons() { return buttons; }
int getMouseX() { return mouseX; }
int getMouseY() { return mouseY; }
int getWheel() { return wheel; }
int getWheelH() { return wheelH; }
protected:
virtual bool claim_collection(Device_t *dev, uint32_t topusage);
virtual void hid_input_begin(uint32_t topusage, uint32_t type, int lgmin, int lgmax);
virtual void hid_input_data(uint32_t usage, int32_t value);
virtual void hid_input_end();
virtual void disconnect_collection(Device_t *dev);
private:
Device_t *mydevice = NULL;
uint8_t collections_claimed = 0;
volatile bool mouseEvent = false;
uint8_t buttons = 0;
int mouseX = 0;
int mouseY = 0;
int wheel = 0;
int wheelH = 0;
};
#else
class MouseController : public USBDriver {
public:
MouseController(USBHost &host) { init(); }
MouseController(USBHost *host) { init(); }
bool available() { return mouseEvent; }
void mouseDataClear();
uint8_t getButtons() { return buttons; }
int8_t getMouseX() { return mouseX; }
int8_t getMouseY() { return mouseY; }
int8_t getWheel() { return wheel; }
protected:
virtual bool claim(Device_t *device, int type, const uint8_t *descriptors, uint32_t len);
virtual void control(const Transfer_t *transfer);
virtual void disconnect();
static void callback(const Transfer_t *transfer);
void new_data(const Transfer_t *transfer);
void init();
private:
void update();
Pipe_t *datapipe;
setup_t setup;
uint32_t packetSize;
uint8_t buttons;
int8_t mouseX;
int8_t mouseY;
int8_t wheel;
bool mouseEvent = false;
uint8_t report[20]; // Set to largest packet size 20 bytes
uint8_t prev_report[20]; // Same as above
Pipe_t mypipes[2] __attribute__ ((aligned(32)));
Transfer_t mytransfers[4] __attribute__ ((aligned(32)));
};
2017-09-10 06:48:10 -04:00
#endif
#endif