1
0
mirror of https://github.com/gdsports/USBHost_t36 synced 2024-12-03 22:22:21 -05:00
USBHost_t36/serial.cpp

1370 lines
43 KiB
C++
Raw Normal View History

2017-10-12 23:06:59 -04:00
/* USB EHCI Host for Teensy 3.6
* Copyright 2017 Paul Stoffregen (paul@pjrc.com)
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* Note: special thanks to the Linux kernel for the CH341's method of operation, particularly how the baud rate is encoded.
2017-10-12 23:06:59 -04:00
*/
#include <Arduino.h>
#include "USBHost_t36.h" // Read this header first for key info
#define print USBHost::print_
#define println USBHost::println_
//#define ENABLE_DEBUG_PINS
#ifdef ENABLE_DEBUG_PINS
#define debugDigitalToggle(pin) {digitalWriteFast(pin, !digitalReadFast(pin));}
#define debugDigitalWrite(pin, state) {digitalWriteFast(pin, state);}
#else
#define debugDigitalToggle(pin) {;}
#define debugDigitalWrite(pin, state) {;}
#endif
/************************************************************/
// Define mapping VID/PID - to Serial Device type.
/************************************************************/
USBSerial::product_vendor_mapping_t USBSerial::pid_vid_mapping[] = {
// FTDI mappings.
{0x0403, 0x6001, USBSerial::FTDI},
// PL2303
{0x67B,0x2303, USBSerial::PL2303},
// CH341
{0x4348, 0x5523, USBSerial::CH341 },
{0x1a86, 0x7523, USBSerial::CH341 },
{0x1a86, 0x5523, USBSerial::CH341 },
// Silex CP210...
{0x10c4, 0xea60, USBSerial::CP210X }
};
/************************************************************/
// Initialization and claiming of devices & interfaces
/************************************************************/
2017-10-12 23:06:59 -04:00
void USBSerial::init()
{
contribute_Pipes(mypipes, sizeof(mypipes)/sizeof(Pipe_t));
contribute_Transfers(mytransfers, sizeof(mytransfers)/sizeof(Transfer_t));
contribute_String_Buffers(mystring_bufs, sizeof(mystring_bufs)/sizeof(strbuf_t));
2017-10-12 23:06:59 -04:00
driver_ready_for_device(this);
format_ = USBHOST_SERIAL_8N1;
2017-10-12 23:06:59 -04:00
}
bool USBSerial::claim(Device_t *dev, int type, const uint8_t *descriptors, uint32_t len)
{
// only claim at interface level
println("USBSerial claim this=", (uint32_t)this, HEX);
print("vid=", dev->idVendor, HEX);
print(", pid=", dev->idProduct, HEX);
print(", bDeviceClass = ", dev->bDeviceClass);
print(", bDeviceSubClass = ", dev->bDeviceSubClass);
println(", bDeviceProtocol = ", dev->bDeviceProtocol);
print_hexbytes(descriptors, len);
2017-10-12 23:06:59 -04:00
if (type == 0) {
//---------------------------------------------------------------------
// CDCACM
if ((dev->bDeviceClass == 2) && (dev->bDeviceSubClass == 0)) {
// It is a communication device see if we can extract the data...
// Try some ttyACM types?
// This code may be similar to MIDI code.
// But first pass see if we can simply look at the interface...
// Lets walk through end points and see if we
// can find an RX and TX bulk transfer end point.
// 0 1 2 3 4 5 6 7 8 *9 10 1 2 3 *4 5 6 7 *8 9 20 1 2 *3 4 5 6 7 8 9*30 1 2 3 4 5 6 7 8 *9 40 1 2 3 4 5 *6 7 8 9 50 1 2
// USB2AX
//09 04 00 00 01 02 02 01 00 05 24 00 10 01 04 24 02 06 05 24 06 00 01 07 05 82 03 08 00 FF 09 04 01 00 02 0A 00 00 00 07 05 04 02 10 00 01 07 05 83 02 10 00 01
//09 04 01 00 02 0A 00 00 00 07 05 04 02 10 00 01 07 05 83 02 10 00 01
// Teensy 3.6
//09 04 00 00 01 02 02 01 00 05 24 00 10 01 05 24 01 01 01 04 24 02 06 05 24 06 00 01 07 05 82 03 10 00 40 09 04 01 00 02 0A 00 00 00 07 05 03 02 40 00 00 07 05 84 02 40 00 00
//09 04 01 00 02 0A 00 00 00 07 05 03 02 40 00 00 07 05 84 02 40 00 00
const uint8_t *p = descriptors;
const uint8_t *end = p + len;
if (p[0] != 9 || p[1] != 4) return false; // interface descriptor
//println(" bInterfaceClass=", p[5]);
//println(" bInterfaceSubClass=", p[6]);
if (p[5] != 2) return false; // bInterfaceClass: 2 Communications
if (p[6] != 2) return false; // bInterfaceSubClass: 2 serial
p += 9;
println(" Interface is Serial");
uint8_t rx_ep = 0;
uint8_t tx_ep = 0;
uint16_t rx_size = 0;
uint16_t tx_size = 0;
interface = 0; // clear out any interface numbers passed in.
while (p < end) {
len = *p;
if (len < 4) return false;
if (p + len > end) return false; // reject if beyond end of data
uint32_t type = p[1];
//println("type: ", type);
// Unlike Audio, we need to look at Interface as our endpoints are after them...
if (type == 4 ) { // Interface - lets remember it's number...
interface = p[2];
println(" Interface: ", interface);
}
else if (type == 0x24) { // 0x24 = CS_INTERFACE,
uint32_t subtype = p[2];
print(" CS_INTERFACE - subtype: ", subtype);
if (len >= 4) print(" ", p[3], HEX);
if (len >= 5) print(" ", p[4], HEX);
if (len >= 6) print(" ", p[5], HEX);
switch (subtype) {
case 0: println(" - Header Functional Descriptor"); break;
case 1: println(" - Call Management Functional"); break;
case 2: println(" - Abstract Control Management"); break;
case 4: println(" - Telephone Ringer"); break;
case 6: println(" - union Functional"); break;
default: println(" - ??? other"); break;
}
// First pass ignore...
} else if (type == 5) {
// endpoint descriptor
if (p[0] < 7) return false; // at least 7 bytes
if (p[3] == 2) { // First try ignore the first one which is interrupt...
println(" Endpoint: ", p[2], HEX);
switch (p[2] & 0xF0) {
case 0x80:
// IN endpoint
if (rx_ep == 0) {
rx_ep = p[2] & 0x0F;
rx_size = p[4] | (p[5] << 8);
println(" rx_size = ", rx_size);
}
break;
case 0x00:
// OUT endpoint
if (tx_ep == 0) {
tx_ep = p[2];
tx_size = p[4] | (p[5] << 8);
println(" tx_size = ", tx_size);
}
break;
default:
println(" invalid end point: ", p[2]);
return false;
}
}
} else {
println(" Unknown type: ", type);
return false; // unknown
}
p += len;
}
print(" exited loop rx:", rx_ep);
println(", tx:", tx_ep);
if (!rx_ep || !tx_ep) return false; // did not get our two end points
if (!init_buffers(rx_size, tx_size)) return false;
println(" rx buffer size:", rxsize);
println(" tx buffer size:", txsize);
rxpipe = new_Pipe(dev, 2, rx_ep & 15, 1, rx_size);
if (!rxpipe) return false;
txpipe = new_Pipe(dev, 2, tx_ep, 0, tx_size);
if (!txpipe) {
// TODO: free rxpipe
return false;
}
sertype = CDCACM;
rxpipe->callback_function = rx_callback;
queue_Data_Transfer(rxpipe, rx1, (rx_size < 64)? rx_size : 64, this);
rxstate = 1;
if (rx_size > 128) {
queue_Data_Transfer(rxpipe, rx2, rx_size, this);
rxstate = 3;
}
txstate = 0;
txpipe->callback_function = tx_callback;
baudrate = 115200;
// Wish I could just call Control to do the output... Maybe can defer until the user calls begin()
// control requires that device is setup which is not until this call completes...
println("Control - CDCACM DTR...");
// Need to setup the data the line coding data
mk_setup(setup, 0x21, 0x22, 3, 0, 0);
queue_Control_Transfer(dev, &setup, NULL, this);
control_queued = true;
pending_control = 0x0; // Maybe don't need to do...
return true;
2017-10-12 23:06:59 -04:00
}
// See if the vendor_id:product_id is in our list of products.
sertype = UNKNOWN;
for (uint8_t i = 0; i < (sizeof(pid_vid_mapping)/sizeof(pid_vid_mapping[0])); i++) {
if ((dev->idVendor == pid_vid_mapping[i].idVendor) && (dev->idProduct == pid_vid_mapping[i].idProduct)) {
sertype = pid_vid_mapping[i].sertype;
break;
}
}
if (sertype == UNKNOWN) return false; // not one of ours
// Lets try to locate the end points. Code is common across these devices
println("len = ", len);
uint8_t count_end_points = descriptors[4];
if (count_end_points < 2) return false; // not enough end points
if (len < 23) return false;
if (descriptors[0] != 9) return false; // length 9
// Lets walk through end points and see if we
// can find an RX and TX bulk transfer end point.
//Example vid=67B, pid=2303
// 0 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 20 1 2 3 4 5 6 7 8 9
//09 04 00 00 03 FF 00 00 00 07 05 81 03 0A 00 01 07 05 02 02 40 00 00 07 05 83 02 40 00 00
uint32_t rxep = 0;
uint32_t txep = 0;
uint16_t rx_size = 0;
uint16_t tx_size = 0;
uint32_t descriptor_index = 9;
while (count_end_points-- && ((rxep == 0) || txep == 0)) {
if (descriptors[descriptor_index] != 7) return false; // length 7
if (descriptors[descriptor_index+1] != 5) return false; // ep desc
if ((descriptors[descriptor_index+3] == 2)
&& (descriptors[descriptor_index+4] <= 64)
&& (descriptors[descriptor_index+5] == 0)) {
// have a bulk EP size
if (descriptors[descriptor_index+2] & 0x80 ) {
rxep = descriptors[descriptor_index+2];
rx_size = descriptors[descriptor_index+4];
} else {
txep = descriptors[descriptor_index+2];
tx_size = descriptors[descriptor_index+4];
}
}
descriptor_index += 7; // setup to look at next one...
}
// Try to verify the end points.
if (!check_rxtx_ep(rxep, txep)) return false;
print("USBSerial, rxep=", rxep & 15);
print("(", rx_size);
print("), txep=", txep);
print("(", tx_size);
println(")");
if (!init_buffers(rx_size, tx_size)) return false;
println(" rx buffer size:", rxsize);
println(" tx buffer size:", txsize);
rxpipe = new_Pipe(dev, 2, rxep & 15, 1, rx_size);
if (!rxpipe) return false;
txpipe = new_Pipe(dev, 2, txep, 0, tx_size);
if (!txpipe) {
//free_Pipe(rxpipe);
return false;
}
rxpipe->callback_function = rx_callback;
queue_Data_Transfer(rxpipe, rx1, rx_size, this);
rxstate = 1;
txstate = 0;
txpipe->callback_function = tx_callback;
baudrate = 115200;
// Now do specific setup per type
switch (sertype) {
//---------------------------------------------------------------------
// FTDI
case FTDI:
{
pending_control = 0x0F;
mk_setup(setup, 0x40, 0, 0, 0, 0); // reset port
queue_Control_Transfer(dev, &setup, NULL, this);
control_queued = true;
return true;
}
//------------------------------------------------------------------------
// Prolific
// TODO: Note: there are probably more vendor/product pairs.. Maybe should create table of them
case PL2303:
{
// First attempt keep it simple...
println("PL2303: readRegister(0x04)");
// Need to setup the data the line coding data
mk_setup(setup, 0xC0, 0x1, 0x8484, 0, 1);
queue_Control_Transfer(dev, &setup, setupdata, this);
control_queued = true;
setup_state = 1; // We are at step one of setup...
pending_control = 0x3f;
return true;
}
//------------------------------------------------------------------------
// CH341
case CH341:
{
println("CH341: 0xC0, 0x5f, 0, 0, 8");
// Need to setup the data the line coding data
mk_setup(setup, 0xC0, 0x5f, 0, 0, sizeof(setupdata));
queue_Control_Transfer(dev, &setup, setupdata, this);
control_queued = true;
setup_state = 1; // We are at step one of setup...
pending_control = 0x7f;
return true;
}
//------------------------------------------------------------------------
// CP210X
case CP210X:
{
println("CP210X: 0x41, 0x11, 0, 0, 0 - reset port");
// Need to setup the data the line coding data
mk_setup(setup, 0x41, 0x11, 0, 0, 0);
queue_Control_Transfer(dev, &setup, NULL, this);
control_queued = true;
setup_state = 1; // We are at step one of setup...
pending_control = 0xf;
return true;
}
//------------------------------------------------------------------------
// PID:VID - not in our product list.
default:
return false;
}
} else if (type != 1) return false;
// TTYACM: <Composit device>
//
// We first tried to claim a simple ttyACM device like a teensy who is configured
// only as Serial at the device level like what was done for midi
//
// However some devices are a compisit of multiple Interfaces, so see if this Interface
// is of the CDC Interface class and 0 for SubClass and protocol
// Todo: some of this can maybe be combined with the Whole device code above.
if (descriptors[0] != 9 || descriptors[1] != 4) return false; // interface descriptor
if (descriptors[4] < 2) return false; // less than 2 end points
if (descriptors[5] != 0xA) return false; // bInterfaceClass, 0xa = CDC data
if (descriptors[6] != 0) return false; // bInterfaceSubClass
if (descriptors[7] != 0) return false; // bInterfaceProtocol
if (descriptors[9] != 7) return false; // length 7
if (descriptors[10] != 5) return false; // ep desc
uint32_t txep = descriptors[11];
uint32_t txsize = descriptors[13];
if (descriptors[12] != 2) return false; // bulk type
if (descriptors[13] > 64) return false; // size 64 Max
if (descriptors[14] != 0) return false;
if (descriptors[16] != 7) return false; // length 7
if (descriptors[17] != 5) return false; // ep desc
uint32_t rxep = descriptors[18];
uint32_t rxsize = descriptors[20];
if (descriptors[19] != 2) return false; // bulk type
if (descriptors[20] > 64) return false; // size 64 Max
if (descriptors[21] != 0) return false;
if (!check_rxtx_ep(rxep, txep)) return false;
interface = descriptors[2];
print("CDC, rxep=", rxep & 15);
println(", txep=", txep);
if (!init_buffers(rxsize, txsize)) return false;
rxpipe = new_Pipe(dev, 2, rxep & 15, 1, rxsize);
if (!rxpipe) return false;
txpipe = new_Pipe(dev, 2, txep, 0, txsize);
if (!txpipe) {
// TODO: free rxpipe
return false;
}
sertype = CDCACM;
rxpipe->callback_function = rx_callback;
queue_Data_Transfer(rxpipe, rx1, 64, this);
rxstate = 1;
if (rxsize > 128) {
queue_Data_Transfer(rxpipe, rx2, 64, this);
rxstate = 3;
2017-10-12 23:06:59 -04:00
}
txstate = 0;
txpipe->callback_function = tx_callback;
// See if we can do just the inteface...
baudrate = 115200;
println("Control - CDCACM LINE_CODING");
setupdata[0] = 0; // Setup baud rate 115200 - 0x1C200
setupdata[1] = 0xc2;
setupdata[2] = 0x1;
setupdata[3] = 0;
setupdata[4] = 0; // 0 - 1 stop bit, 1 - 1.5 stop bits, 2 - 2 stop bits
setupdata[5] = 0; // 0 - None, 1 - Odd, 2 - Even, 3 - Mark, 4 - Space
setupdata[6] = 8; // Data bits (5, 6, 7, 8 or 16)
mk_setup(setup, 0x21, 0x20, 0, 0, 7);
queue_Control_Transfer(dev, &setup, setupdata, this);
pending_control = 0x04; // Maybe don't need to do...
control_queued = true;
return true;
2017-10-12 23:06:59 -04:00
}
// check if two legal endpoints, 1 receive & 1 transmit
bool USBSerial::check_rxtx_ep(uint32_t &rxep, uint32_t &txep)
{
if ((rxep & 0x0F) == 0) return false;
if ((txep & 0x0F) == 0) return false;
uint32_t rxdir = rxep & 0xF0;
uint32_t txdir = txep & 0xF0;
if (rxdir == 0x80 && txdir == 0x00) {
return true;
}
if (rxdir == 0x00 && txdir == 0x80) {
std::swap(rxep, txep);
return true;
}
return false;
}
// initialize buffer sizes and pointers
bool USBSerial::init_buffers(uint32_t rsize, uint32_t tsize)
{
// buffer must be able to hold 2 of each packet, plus buffer
// space to hold RX and TX data.
2017-10-12 23:06:59 -04:00
if (sizeof(bigbuffer) < (rsize + tsize) * 3 + 2) return false;
rx1 = (uint8_t *)bigbuffer;
rx2 = rx1 + rsize;
tx1 = rx2 + rsize;
tx2 = tx1 + tsize;
rxbuf = tx2 + tsize;
// FIXME: this assume 50-50 split - not true when rsize != tsize
rxsize = (sizeof(bigbuffer) - (rsize + tsize) * 2) / 2;
txsize = rxsize;
txbuf = rxbuf + rxsize;
rxhead = 0;
rxtail = 0;
txhead = 0;
txtail = 0;
rxstate = 0;
return true;
}
void USBSerial::disconnect()
{
}
2017-10-12 23:06:59 -04:00
void USBSerial::control(const Transfer_t *transfer)
{
println("control callback (serial) ", pending_control, HEX);
control_queued = false;
// We will split this up by Serial type, maybe different functions?
//-------------------------------------------------------------------------
// First FTDI
if (sertype == FTDI) {
if (pending_control & 1) {
pending_control &= ~1;
// set data format
uint16_t ftdi_format = format_ & 0xf; // This should give us the number of bits.
// now lets extract the parity from our encoding
ftdi_format |= (format_ & 0xe0) << 3; // they encode bits 9-11
// See if two stop bits
if (format_ & 0x100) ftdi_format |= (0x2 << 11);
mk_setup(setup, 0x40, 4, ftdi_format, 0, 0); // data format 8N1
queue_Control_Transfer(device, &setup, NULL, this);
control_queued = true;
return;
}
// set baud rate
if (pending_control & 2) {
pending_control &= ~2;
uint32_t baudval = 3000000 / baudrate;
mk_setup(setup, 0x40, 3, baudval, 0, 0);
queue_Control_Transfer(device, &setup, NULL, this);
control_queued = true;
return;
}
// configure flow control
if (pending_control & 4) {
pending_control &= ~4;
mk_setup(setup, 0x40, 2, 0, 1, 0);
queue_Control_Transfer(device, &setup, NULL, this);
control_queued = true;
return;
}
// set DTR
if (pending_control & 8) {
pending_control &= ~8;
mk_setup(setup, 0x40, 1, 0x0101, 0, 0);
queue_Control_Transfer(device, &setup, NULL, this);
control_queued = true;
return;
}
// clear DTR
if (pending_control & 0x80) {
pending_control &= ~0x80;
println("FTDI clear DTR");
mk_setup(setup, 0x40, 1, 0x0100, 0, 0);
queue_Control_Transfer(device, &setup, NULL, this);
control_queued = true;
return;
}
}
//-------------------------------------------------------------------------
// Now CDCACM
if (sertype == CDCACM) {
if (pending_control & 2) {
pending_control &= ~2;
// Should probably use data structure, but that may depend on byte ordering...
setupdata[0] = (baudrate) & 0xff; // Setup baud rate 115200 - 0x1C200
setupdata[1] = (baudrate >> 8) & 0xff;
setupdata[2] = (baudrate >> 16) & 0xff;
setupdata[3] = (baudrate >> 24) & 0xff;
setupdata[4] = (format_ & 0x100)? 2 : 0; // 0 - 1 stop bit, 1 - 1.5 stop bits, 2 - 2 stop bits
setupdata[5] = (format_ & 0xe0) >> 5; // 0 - None, 1 - Odd, 2 - Even, 3 - Mark, 4 - Space
setupdata[6] = format_ & 0x1f; // Data bits (5, 6, 7, 8 or 16)
print("CDCACM setup: ");
print_hexbytes(&setupdata, 7);
mk_setup(setup, 0x21, 0x20, 0, 0, 7);
queue_Control_Transfer(device, &setup, setupdata, this);
control_queued = true;
return;
}
// configure flow control
if (pending_control & 4) {
pending_control &= ~4;
println("Control - 0x21,0x22, 0x3");
// Need to setup the data the line coding data
mk_setup(setup, 0x21, 0x22, 3, 0, 0);
queue_Control_Transfer(device, &setup, NULL, this);
control_queued = true;
return;
}
if (pending_control & 0x80) {
pending_control &= ~0x80;
println("Control - 0x21,0x22, 0x0 - clear DTR");
// Need to setup the data the line coding data
mk_setup(setup, 0x21, 0x22, 0, 0, 0);
queue_Control_Transfer(device, &setup, NULL, this);
control_queued = true;
return;
}
}
//-------------------------------------------------------------------------
// Now PL2303 - Which appears to be a little more complicated
if (sertype == PL2303) {
if (pending_control & 1) {
// Still in larger setup state mode
switch (setup_state) {
case 1:
println("PL2303: writeRegister(0x04, 0x00)");
mk_setup(setup, 0x40, 1, 0x0404, 0, 0); //
queue_Control_Transfer(device, &setup, NULL, this);
setup_state = 2;
control_queued = true;
return;
case 2:
println("PL2303: readRegister(0x04)");
mk_setup(setup, 0xC0, 0x1, 0x8484, 0, 1);
queue_Control_Transfer(device, &setup, setupdata, this);
control_queued = true;
setup_state = 3;
return;
case 3:
println("PL2303: v1 = readRegister(0x03)");
mk_setup(setup, 0xC0, 0x1, 0x8383, 0, 1);
queue_Control_Transfer(device, &setup, setupdata, this);
control_queued = true;
setup_state = 4;
return;
case 4:
println("PL2303: readRegister(0x04)");
// Do we need this value long term or we could just leave in setup data?
pl2303_v1 = setupdata[0]; // save the first bye of version
mk_setup(setup, 0xC0, 0x1, 0x8484, 0, 1);
queue_Control_Transfer(device, &setup, setupdata, this);
control_queued = true;
setup_state = 5;
return;
case 5:
println("PL2303: writeRegister(0x04, 0x01)");
mk_setup(setup, 0x40, 1, 0x0404, 1, 0); //
queue_Control_Transfer(device, &setup, NULL, this);
setup_state = 6;
control_queued = true;
return;
case 6:
println("PL2303: readRegister(0x04)");
mk_setup(setup, 0xC0, 0x1, 0x8484, 0, 1);
queue_Control_Transfer(device, &setup, setupdata, this);
control_queued = true;
setup_state = 7;
return;
case 7:
println("PL2303: v2 = readRegister(0x03)");
mk_setup(setup, 0xC0, 0x1, 0x8383, 0, 1);
queue_Control_Transfer(device, &setup, setupdata, this);
control_queued = true;
setup_state = 8;
return;
case 8:
pl2303_v2 = setupdata[0]; // save the first bye of version
print(" PL2303 Version ", pl2303_v1, HEX);
println(":", pl2303_v2, HEX);
println("PL2303: writeRegister(0, 1)");
mk_setup(setup, 0x40, 1, 0, 1, 0); //
queue_Control_Transfer(device, &setup, NULL, this);
setup_state = 9;
control_queued = true;
return;
case 9:
println("PL2303: writeRegister(1, 0)");
mk_setup(setup, 0x40, 1, 1, 0, 0); //
queue_Control_Transfer(device, &setup, NULL, this);
setup_state = 10;
control_queued = true;
return;
case 10:
println("PL2303: writeRegister(2, 44)");
mk_setup(setup, 0x40, 1, 2, 0x44, 0); //
queue_Control_Transfer(device, &setup, NULL, this);
setup_state = 11;
control_queued = true;
return;
case 11:
println("PL2303: writeRegister(8, 0)");
mk_setup(setup, 0x40, 1, 8, 0, 0); //
queue_Control_Transfer(device, &setup, NULL, this);
setup_state = 12;
control_queued = true;
return;
case 12:
println("PL2303: writeRegister(9, 0)");
mk_setup(setup, 0x40, 1, 9, 0, 0); //
queue_Control_Transfer(device, &setup, NULL, this);
setup_state = 13;
control_queued = true;
return;
case 13:
println("PL2303: Read current Baud/control");
mk_setup(setup, 0xA1, 0x21, 0, 0, 7);
queue_Control_Transfer(device, &setup, setupdata, this);
control_queued = true;
break;
}
pending_control &= ~1; // We are finally going to leave this list and join the rest
if (control_queued) return;
}
// set baud rate
if (pending_control & 2) {
pending_control &= ~2;
// See what the read returned earlier
print("PL2303: Returned configuration data: ");
print_hexbytes(setupdata, 7);
// Should probably use data structure, but that may depend on byte ordering...
setupdata[0] = (baudrate) & 0xff; // Setup baud rate 115200 - 0x1C200
setupdata[1] = (baudrate >> 8) & 0xff;
setupdata[2] = (baudrate >> 16) & 0xff;
setupdata[3] = (baudrate >> 24) & 0xff;
setupdata[4] = (format_ & 0x100)? 2 : 0; // 0 - 1 stop bit, 1 - 1.5 stop bits, 2 - 2 stop bits
setupdata[5] = (format_ & 0xe0) >> 5; // 0 - None, 1 - Odd, 2 - Even, 3 - Mark, 4 - Space
setupdata[6] = format_ & 0x1f; // Data bits (5, 6, 7, 8 or 16)
print("PL2303: Set baud/control: ", baudrate, HEX);
print(" = ");
print_hexbytes(&setupdata, 7);
mk_setup(setup, 0x21, 0x20, 0, 0, 7);
queue_Control_Transfer(device, &setup, setupdata, this);
control_queued = true;
return;
}
if (pending_control & 4) {
pending_control &= ~4;
println("PL2303: writeRegister(0, 0)");
mk_setup(setup, 0x40, 1, 0, 0, 0); //
queue_Control_Transfer(device, &setup, NULL, this);
control_queued = true;
return;
}
if (pending_control & 8) {
pending_control &= ~8;
println("PL2303: Read current Baud/control");
memset(setupdata, 0, sizeof(setupdata)); // clear it to see if we read it...
mk_setup(setup, 0xA1, 0x21, 0, 0, 7);
queue_Control_Transfer(device, &setup, setupdata, this);
control_queued = true;
}
if (pending_control & 0x10) {
pending_control &= ~0x10;
print("PL2303: Returned configuration data: ");
print_hexbytes(setupdata, 7);
// This sets the control lines (0x1=DTR, 0x2=RTS)
println("PL2303: 0x21, 0x22, 0x3");
mk_setup(setup, 0x21, 0x22, 3, 0, 0); //
queue_Control_Transfer(device, &setup, NULL, this);
control_queued = true;
return;
}
if (pending_control & 0x20) {
pending_control &= ~0x20;
println("PL2303: 0x21, 0x22, 0x3");
mk_setup(setup, 0x21, 0x22, 3, 0, 0); //
queue_Control_Transfer(device, &setup, NULL, this);
control_queued = true;
}
if (pending_control & 0x80) {
pending_control &= ~0x80;
println("PL2303: 0x21, 0x22, 0x0"); // Clear DTR/RTS
mk_setup(setup, 0x21, 0x22, 0, 0, 0); //
queue_Control_Transfer(device, &setup, NULL, this);
control_queued = true;
}
}
if (sertype == CH341) {
#if 0
print(" Transfer: ");
print_hexbytes(&transfer->setup, sizeof(setup_t));
if (transfer->length) {
print(" data: ");
print_hexbytes(transfer->buffer, transfer->length);
}
#endif
if (pending_control & 1) {
// Still in larger setup state mode
switch (setup_state) {
case 1:
print(" Returned: ");
print_hexbytes(transfer->buffer, transfer->length);
println("CH341: 40, a1, 0, 0, 0");
mk_setup(setup, 0x40, 0xa1, 0, 0, 0); //
queue_Control_Transfer(device, &setup, NULL, this);
setup_state = 2;
control_queued = true;
return;
case 2:
ch341_setBaud(0); // send the first byte of the baud rate
control_queued = true;
setup_state = 3;
return;
case 3:
ch341_setBaud(1); // send the second byte of the baud rate
control_queued = true;
setup_state = 4;
return;
case 4:
println("CH341: c0, 95, 2518, 0, 8");
mk_setup(setup, 0xc0, 0x95, 0x2518, 0, sizeof(setup)); //
queue_Control_Transfer(device, &setup, setupdata, this);
setup_state = 5;
control_queued = true;
return;
case 5:
print(" Returned: ");
print_hexbytes(transfer->buffer, transfer->length);
println("CH341: 40, 0x9a, 0x2518, 0x0050, 0");
mk_setup(setup, 0x40, 0x9a, 0x2518, 0x0050, 0); //
queue_Control_Transfer(device, &setup, NULL, this);
setup_state = 6;
control_queued = true;
return;
case 6:
println("CH341: c0, 95, 0x706, 0, 8 - get status");
mk_setup(setup, 0xc0, 0x95, 0x706, 0, sizeof(setup)); //
queue_Control_Transfer(device, &setup, setupdata, this);
setup_state = 7;
control_queued = true;
return;
case 7:
print(" Returned: ");
print_hexbytes(transfer->buffer, transfer->length);
println("CH341: 40, 0xa1, 0x501f, 0xd90a, 0");
mk_setup(setup, 0x40, 0xa1, 0x501f, 0xd90a, 0); //
queue_Control_Transfer(device, &setup, NULL, this);
setup_state = 8;
control_queued = true;
break;
}
pending_control &= ~1; // We are finally going to leave this list and join the rest
if (control_queued) return;
}
// set baud rate
if (pending_control & 2) {
pending_control &= ~2;
ch341_setBaud(0); // send the first byte of the baud rate
control_queued = true;
return;
}
if (pending_control & 4) {
pending_control &= ~4;
ch341_setBaud(1); // send the first byte of the baud rate
control_queued = true;
return;
}
if (pending_control & 8) {
pending_control &= ~8;
uint16_t ch341_format;
switch (format_) {
default:
// These values were observed when used on PC... Need to flush out others.
case USBHOST_SERIAL_8N1: ch341_format = 0xc3; break;
case USBHOST_SERIAL_7E1: ch341_format = 0xda; break;
case USBHOST_SERIAL_7O1: ch341_format = 0xca; break;
case USBHOST_SERIAL_8N2: ch341_format = 0xc7; break;
}
println("CH341: 40, 0x9a, 0x2518: ", ch341_format, HEX);
mk_setup(setup, 0x40, 0x9a, 0x2518, ch341_format, 0); //
queue_Control_Transfer(device, &setup, NULL, this);
control_queued = true;
return;
}
if (pending_control & 0x10) {
pending_control &= ~0x10;
// This is setting handshake need to figure out what...
// 0x20=DTR, 0x40=RTS send ~ of values.
println("CH341: 0x40, 0xa4, 0xff9f, 0, 0 - Handshake");
mk_setup(setup, 0x40, 0xa4, 0xff9f, 0, 0); //
queue_Control_Transfer(device, &setup, NULL, this);
control_queued = true;
return;
}
if (pending_control & 0x20) {
pending_control &= ~0x20;
// This is setting handshake need to figure out what...
println("CH341: c0, 95, 0x706, 0, 8 - get status");
mk_setup(setup, 0xc0, 0x95, 0x706, 0, sizeof(setup)); //
queue_Control_Transfer(device, &setup, setupdata, this);
control_queued = true;
return;
}
if (pending_control & 0x40) {
pending_control &= ~0x40;
print(" Returned: ");
print_hexbytes(transfer->buffer, transfer->length);
println("CH341: 0x40, 0x9a, 0x2727, 0, 0");
mk_setup(setup, 0x40, 0x9a, 0x2727, 0, 0); //
queue_Control_Transfer(device, &setup, NULL, this);
return;
}
if (pending_control & 0x80) {
pending_control &= ~0x80;
println("CH341: 0x40, 0xa4, 0xffff, 0, 0 - Handshake");
mk_setup(setup, 0x40, 0xa4, 0xffff, 0, 0); //
queue_Control_Transfer(device, &setup, NULL, this);
control_queued = true;
return;
}
}
//-------------------------------------------------------------------------
// First CP210X
if (sertype == CP210X) {
if (pending_control & 1) {
pending_control &= ~1;
// set data format
uint16_t cp210x_format = (format_ & 0xf) << 8; // This should give us the number of bits.
// now lets extract the parity from our encoding bits 5-7 and in theres 4-7
cp210x_format |= (format_ & 0xe0) >> 1; // they encode bits 9-11
// See if two stop bits
if (format_ & 0x100) cp210x_format |= 2;
mk_setup(setup, 0x41, 3, cp210x_format, 0, 0); // data format 8N1
queue_Control_Transfer(device, &setup, NULL, this);
control_queued = true;
return;
}
// set baud rate
if (pending_control & 2) {
pending_control &= ~2;
setupdata[0] = (baudrate) & 0xff; // Setup baud rate 115200 - 0x1C200
setupdata[1] = (baudrate >> 8) & 0xff;
setupdata[2] = (baudrate >> 16) & 0xff;
setupdata[3] = (baudrate >> 24) & 0xff;
mk_setup(setup, 0x40, 0x1e, 0, 0, 4);
queue_Control_Transfer(device, &setup, setupdata, this);
control_queued = true;
return;
}
// configure flow control
if (pending_control & 4) {
pending_control &= ~4;
memset(setupdata, 0, sizeof(setupdata)); // clear out the data
setupdata[0] = 1; // Set dtr active?
mk_setup(setup, 0x41, 13, 0, 0, 0x10);
queue_Control_Transfer(device, &setup, setupdata, this);
control_queued = true;
return;
}
// set DTR
if (pending_control & 8) {
pending_control &= ~8;
mk_setup(setup, 0x41, 7, 0x0101, 0, 0);
queue_Control_Transfer(device, &setup, NULL, this);
control_queued = true;
return;
}
// clear DTR
if (pending_control & 0x80) {
pending_control &= ~0x80;
println("CP210x clear DTR");
mk_setup(setup, 0x40, 1, 0x0100, 0, 0);
queue_Control_Transfer(device, &setup, NULL, this);
control_queued = true;
return;
}
}
}
2017-10-12 23:06:59 -04:00
#define CH341_BAUDBASE_FACTOR 1532620800
#define CH341_BAUDBASE_DIVMAX 3
void USBSerial::ch341_setBaud(uint8_t byte_index) {
if (byte_index == 0) {
uint32_t factor;
uint16_t divisor;
factor = (CH341_BAUDBASE_FACTOR / baudrate);
divisor = CH341_BAUDBASE_DIVMAX;
while ((factor > 0xfff0) && divisor) {
factor >>= 3;
divisor--;
}
factor = 0x10000 - factor;
factor = (factor & 0xff00) | divisor;
setupdata[0] = factor & 0xff; // save away the low byte for 2nd message
println("CH341: 40, 0x9a, 0x1312... (Baud word 0):", factor, HEX);
mk_setup(setup, 0x40, 0x9a, 0x1312, factor, 0); //
} else {
// Second packet use the byte we saved away during the calculation above
println("CH341: 40, 0x9a, 0x0f2c... (Baud word 1):", setupdata[0], HEX);
mk_setup(setup, 0x40, 0x9a, 0x0f2c, setupdata[0], 0); //
}
queue_Control_Transfer(device, &setup, setupdata, this);
control_queued = true;
}
/************************************************************/
// Interrupt-based Data Movement
/************************************************************/
2017-10-12 23:06:59 -04:00
void USBSerial::rx_callback(const Transfer_t *transfer)
{
if (!transfer->driver) return;
((USBSerial *)(transfer->driver))->rx_data(transfer);
}
void USBSerial::tx_callback(const Transfer_t *transfer)
{
if (!transfer->driver) return;
((USBSerial *)(transfer->driver))->tx_data(transfer);
}
2017-10-12 23:06:59 -04:00
void USBSerial::rx_data(const Transfer_t *transfer)
{
uint32_t len = transfer->length - ((transfer->qtd.token >> 16) & 0x7FFF);
debugDigitalToggle(6);
// first update rxstate bitmask, since buffer is no longer queued
2017-10-12 23:06:59 -04:00
if (transfer->buffer == rx1) {
rxstate &= 0xFE;
} else if (transfer->buffer == rx2) {
rxstate &= 0xFD;
}
// get start of data and actual length
const uint8_t *p = (const uint8_t *)transfer->buffer;
if (sertype == FTDI) {
2017-10-12 23:06:59 -04:00
if (len >= 2) {
p += 2;
len -= 2;
} else {
len = 0;
}
}
if (len > 0) {
print("rx token: ", transfer->qtd.token, HEX);
print(" transfer length: ", transfer->length, DEC);
print(" len:", len, DEC);
print(" - ", *p, HEX);
println(" ", *(p+1), HEX);
print("rx: ");
print_hexbytes(p, len);
}
// Copy data from packet buffer to circular buffer.
// Assume the buffer will always have space, since we
// check before queuing the buffers
2017-10-12 23:06:59 -04:00
uint32_t head = rxhead;
uint32_t tail = rxtail;
if (++head >= rxsize) head = 0;
uint32_t avail;
if (len > 0) {
//print("head=", head);
//print(", tail=", tail);
avail = rxsize - head;
//print(", avail=", avail);
//println(", rxsize=", rxsize);
if (avail > len) avail = len;
memcpy(rxbuf + head, p, avail);
if (len <= avail) {
head += avail - 1;
if (head >= rxsize) head = 0;
} else {
head = len - avail - 1;
memcpy(rxbuf, p + avail, head + 1);
}
rxhead = head;
}
2017-10-15 05:39:36 -04:00
// TODO: can be this more efficient? We know from above which
// buffer is no longer queued, so possible skip most of this work?
rx_queue_packets(head, tail);
}
// re-queue packet buffer(s) if possible
void USBSerial::rx_queue_packets(uint32_t head, uint32_t tail)
{
uint32_t avail;
2017-10-12 23:06:59 -04:00
if (head >= tail) {
avail = rxsize - 1 - head + tail;
2017-10-12 23:06:59 -04:00
} else {
avail = tail - head - 1;
2017-10-12 23:06:59 -04:00
}
uint32_t packetsize = rx2 - rx1;
if (avail >= packetsize) {
if ((rxstate & 0x01) == 0) {
queue_Data_Transfer(rxpipe, rx1, packetsize, this);
rxstate |= 0x01;
} else if ((rxstate & 0x02) == 0) {
queue_Data_Transfer(rxpipe, rx2, packetsize, this);
rxstate |= 0x02;
}
if ((rxstate & 0x03) != 0x03 && avail >= packetsize * 2) {
if ((rxstate & 0x01) == 0) {
queue_Data_Transfer(rxpipe, rx1, packetsize, this);
rxstate |= 0x01;
} else if ((rxstate & 0x02) == 0) {
queue_Data_Transfer(rxpipe, rx2, packetsize, this);
rxstate |= 0x02;
}
}
}
}
void USBSerial::tx_data(const Transfer_t *transfer)
{
uint32_t mask;
uint8_t *p = (uint8_t *)transfer->buffer;
debugDigitalWrite(5, HIGH);
if (p == tx1) {
2017-10-15 05:39:36 -04:00
println("tx1:");
mask = 1;
//txstate &= 0xFE;
} else if (p == tx2) {
2017-10-15 05:39:36 -04:00
println("tx2:");
mask = 2;
//txstate &= 0xFD;
} else {
debugDigitalWrite(5, LOW);
return; // should never happen
}
// check how much more data remains in the transmit buffer
uint32_t head = txhead;
uint32_t tail = txtail;
uint32_t count;
if (head >= tail) {
count = head - tail;
} else {
count = txsize + head - tail;
}
uint32_t packetsize = tx2 - tx1;
// Only output full packets unless the flush bit was set.
if ((count == 0) || ((count < packetsize) && ((txstate & 0x4) == 0) )) {
// not enough data in buffer to fill a full packet
txstate &= ~(mask | 4); // turn off that transfer and make sure the flush bit is not set
debugDigitalWrite(5, LOW);
return;
}
// immediately transmit another full packet, if we have enough data
if (count >= packetsize) count = packetsize;
else txstate &= ~(mask | 4); // This packet will complete any outstanding flush
println("TX:moar data!!!!");
if (++tail >= txsize) tail = 0;
uint32_t n = txsize - tail;
if (n > count) n = count;
memcpy(p, txbuf + tail, n);
if (n >= count) {
tail += n - 1;
if (tail >= txsize) tail = 0;
} else {
uint32_t len = count - n;
memcpy(p + n, txbuf, len);
tail = len - 1;
2017-10-15 05:39:36 -04:00
}
txtail = tail;
queue_Data_Transfer(txpipe, p, count, this);
debugDigitalWrite(5, LOW);
2017-10-12 23:06:59 -04:00
}
void USBSerial::flush()
{
print("USBSerial::flush");
if (txhead == txtail) {
println(" - Empty");
return; // empty.
}
debugDigitalWrite(32, HIGH);
NVIC_DISABLE_IRQ(IRQ_USBHS);
txtimer.stop(); // Stop longer timer.
txtimer.start(100); // Start a mimimal timeout
// timer_event(nullptr); // Try calling direct - fails to work
NVIC_ENABLE_IRQ(IRQ_USBHS);
while (txstate & 3) ; // wait for all of the USB packets to be sent.
println(" completed");
debugDigitalWrite(32, LOW);
}
2017-10-12 23:06:59 -04:00
void USBSerial::timer_event(USBDriverTimer *whichTimer)
{
debugDigitalWrite(7, HIGH);
println("txtimer");
uint32_t count;
uint32_t head = txhead;
uint32_t tail = txtail;
if (head == tail) {
println(" *** Empty ***");
debugDigitalWrite(7, LOW);
return; // nothing to transmit
} else if (head > tail) {
count = head - tail;
} else {
count = txsize + head - tail;
}
uint8_t *p;
if ((txstate & 0x01) == 0) {
p = tx1;
txstate |= 0x01;
} else if ((txstate & 0x02) == 0) {
p = tx2;
txstate |= 0x02;
} else {
txstate |= 4; // Tell the TX code to do flush code.
println(" *** No buffers ***");
debugDigitalWrite(7, LOW);
return; // no outgoing buffers available, try again later
}
uint32_t packetsize = tx2 - tx1;
// Possible for remaining ? packet size and not have both?
if (count > packetsize) {
txstate |= 4; // One of the active transfers will handle the remaining parts
count = packetsize;
}
if (++tail >= txsize) tail = 0;
uint32_t n = txsize - tail;
if (n > count) n = count;
memcpy(p, txbuf + tail, n);
if (n >= count) {
tail += n - 1;
if (tail >= txsize) tail = 0;
} else {
uint32_t len = count - n;
memcpy(p + n, txbuf, len);
tail = len - 1;
}
txtail = tail;
print(" TX data (", count);
print(") ");
print_hexbytes(p, count);
queue_Data_Transfer(txpipe, p, count, this);
debugDigitalWrite(7, LOW);
}
2017-10-12 23:06:59 -04:00
/************************************************************/
// User Functions - must disable USBHQ IRQ for EHCI access
/************************************************************/
2017-10-12 23:06:59 -04:00
void USBSerial::begin(uint32_t baud, uint32_t format)
{
NVIC_DISABLE_IRQ(IRQ_USBHS);
baudrate = baud;
bool format_changed = format != format_;
format_ = format;
switch (sertype) {
default:
case CDCACM: pending_control |= 0x6; break;
case FTDI: pending_control |= (format_changed? 0xf : 0xe); break; // Set BAUD, FLOW, DTR
case PL2303: pending_control |= 0x1e; break; // set more stuff...
case CH341: pending_control |= 0x1e; break;
case CP210X: pending_control |= 0xf; break;
}
if (!control_queued) control(NULL);
NVIC_ENABLE_IRQ(IRQ_USBHS);
// Wait until all packets have been queued before we return to caller.
while (pending_control) {
yield(); // not sure if we want to yield or what?
}
2017-10-12 23:06:59 -04:00
}
void USBSerial::end(void)
{
NVIC_DISABLE_IRQ(IRQ_USBHS);
switch (sertype) {
default:
case CDCACM: pending_control |= 0x80; break;
case FTDI: pending_control |= 0x80; break; // clear DTR
case PL2303: pending_control |= 0x80; break;
case CH341: pending_control |= 0x80; break;
}
if (!control_queued) control(NULL);
NVIC_ENABLE_IRQ(IRQ_USBHS);
// Wait until all packets have been queued before we return to caller.
while (pending_control) {
yield(); // not sure if we want to yield or what?
}
2017-10-12 23:06:59 -04:00
}
int USBSerial::available(void)
{
if (!device) return 0;
uint32_t head = rxhead;
uint32_t tail = rxtail;
if (head >= tail) return head - tail;
return rxsize + head - tail;
2017-10-12 23:06:59 -04:00
}
int USBSerial::peek(void)
{
if (!device) return -1;
uint32_t head = rxhead;
uint32_t tail = rxtail;
if (head == tail) return -1;
if (++tail >= rxsize) tail = 0;
return rxbuf[tail];
2017-10-12 23:06:59 -04:00
}
int USBSerial::read(void)
{
if (!device) return -1;
uint32_t head = rxhead;
uint32_t tail = rxtail;
if (head == tail) return -1;
if (++tail >= rxsize) tail = 0;
int c = rxbuf[tail];
rxtail = tail;
if ((rxstate & 0x03) != 0x03) {
NVIC_DISABLE_IRQ(IRQ_USBHS);
rx_queue_packets(head, tail);
NVIC_ENABLE_IRQ(IRQ_USBHS);
}
return c;
}
int USBSerial::availableForWrite()
{
if (!device) return 0;
uint32_t head = txhead;
uint32_t tail = txtail;
if (head >= tail) return txsize - 1 - head + tail;
return tail - head - 1;
2017-10-12 23:06:59 -04:00
}
size_t USBSerial::write(uint8_t c)
{
if (!device) return 0;
uint32_t head = txhead;
if (++head >= txsize) head = 0;
while (txtail == head) {
// wait...
}
txbuf[head] = c;
txhead = head;
2017-10-15 05:39:36 -04:00
//print("head=", head);
//println(", tail=", txtail);
// if full packet in buffer and tx packet ready, queue it
NVIC_DISABLE_IRQ(IRQ_USBHS);
uint32_t tail = txtail;
if ((txstate & 0x03) != 0x03) {
// at least one packet buffer is ready to transmit
uint32_t count;
if (head >= tail) {
count = head - tail;
} else {
count = txsize + head - tail;
}
uint32_t packetsize = tx2 - tx1;
if (count >= packetsize) {
//println("txsize=", txsize);
uint8_t *p;
if ((txstate & 0x01) == 0) {
p = tx1;
txstate |= 0x01;
} else /* if ((txstate & 0x02) == 0) */ {
p = tx2;
txstate |= 0x02;
}
// copy data to packet buffer
if (++tail >= txsize) tail = 0;
uint32_t n = txsize - tail;
if (n > packetsize) n = packetsize;
//print("memcpy, offset=", tail);
//println(", len=", n);
memcpy(p, txbuf + tail, n);
if (n >= packetsize) {
tail += n - 1;
if (tail >= txsize) tail = 0;
} else {
//n = txsize - n;
uint32_t len = packetsize - n;
//println("memcpy, offset=0, len=", len);
memcpy(p + n, txbuf, len);
tail = len - 1;
}
txtail = tail;
//println("queue tx packet, newtail=", tail);
debugDigitalWrite(7, HIGH);
2017-10-15 05:39:36 -04:00
queue_Data_Transfer(txpipe, p, packetsize, this);
debugDigitalWrite(7, LOW);
2017-10-15 05:39:36 -04:00
NVIC_ENABLE_IRQ(IRQ_USBHS);
return 1;
}
}
// otherwise, set a latency timer to later transmit partial packet
txtimer.stop();
txtimer.start(write_timeout_);
2017-10-15 05:39:36 -04:00
NVIC_ENABLE_IRQ(IRQ_USBHS);
2017-10-12 23:06:59 -04:00
return 1;
}