1
0
mirror of https://github.com/gdsports/USBHost_t36 synced 2024-11-14 21:25:01 -05:00
USBHost_t36/serial.cpp

509 lines
13 KiB
C++
Raw Normal View History

2017-10-12 23:06:59 -04:00
/* USB EHCI Host for Teensy 3.6
* Copyright 2017 Paul Stoffregen (paul@pjrc.com)
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <Arduino.h>
#include "USBHost_t36.h" // Read this header first for key info
#define print USBHost::print_
#define println USBHost::println_
/************************************************************/
// Initialization and claiming of devices & interfaces
/************************************************************/
2017-10-12 23:06:59 -04:00
void USBSerial::init()
{
contribute_Pipes(mypipes, sizeof(mypipes)/sizeof(Pipe_t));
contribute_Transfers(mytransfers, sizeof(mytransfers)/sizeof(Transfer_t));
contribute_String_Buffers(mystring_bufs, sizeof(mystring_bufs)/sizeof(strbuf_t));
2017-10-12 23:06:59 -04:00
driver_ready_for_device(this);
}
bool USBSerial::claim(Device_t *dev, int type, const uint8_t *descriptors, uint32_t len)
{
// only claim at interface level
println("USBSerial claim this=", (uint32_t)this, HEX);
print("vid=", dev->idVendor, HEX);
println(", pid=", dev->idProduct, HEX);
if (type == 0) {
if (dev->idVendor == 0x0403 && dev->idProduct == 0x6001) {
// FTDI FT232
println("len = ", len);
if (len < 23) return false;
if (descriptors[0] != 9) return false; // length 9
if (descriptors[9] != 7) return false; // length 7
if (descriptors[10] != 5) return false; // ep desc
uint32_t rxep = descriptors[11];
if (descriptors[12] != 2) return false; // bulk type
if (descriptors[13] != 64) return false; // size 64
if (descriptors[14] != 0) return false;
if (descriptors[16] != 7) return false; // length 7
if (descriptors[17] != 5) return false; // ep desc
uint32_t txep = descriptors[18];
if (descriptors[19] != 2) return false; // bulk type
if (descriptors[20] != 64) return false; // size 64
if (descriptors[21] != 0) return false;
if (!check_rxtx_ep(rxep, txep)) return false;
print("FTDI, rxep=", rxep & 15);
println(", txep=", txep);
if (!init_buffers(64, 64)) return false;
rxpipe = new_Pipe(dev, 2, rxep & 15, 1, 64);
if (!rxpipe) return false;
txpipe = new_Pipe(dev, 2, txep, 0, 64);
if (!txpipe) {
// TODO: free rxpipe
return false;
}
sertype = FTDI;
2017-10-12 23:06:59 -04:00
rxpipe->callback_function = rx_callback;
queue_Data_Transfer(rxpipe, rx1, 64, this);
rxstate = 1;
if (rxsize > 128) {
queue_Data_Transfer(rxpipe, rx2, 64, this);
rxstate = 3;
}
2017-10-15 05:39:36 -04:00
txstate = 0;
2017-10-12 23:06:59 -04:00
txpipe->callback_function = tx_callback;
baudrate = 115200;
pending_control = 0x0F;
mk_setup(setup, 0x40, 0, 0, 0, 0); // reset port
queue_Control_Transfer(dev, &setup, NULL, this);
control_queued = true;
2017-10-12 23:06:59 -04:00
return true;
}
}
return false;
}
// check if two legal endpoints, 1 receive & 1 transmit
bool USBSerial::check_rxtx_ep(uint32_t &rxep, uint32_t &txep)
{
if ((rxep & 0x0F) == 0) return false;
if ((txep & 0x0F) == 0) return false;
uint32_t rxdir = rxep & 0xF0;
uint32_t txdir = txep & 0xF0;
if (rxdir == 0x80 && txdir == 0x00) {
return true;
}
if (rxdir == 0x00 && txdir == 0x80) {
std::swap(rxep, txep);
return true;
}
return false;
}
// initialize buffer sizes and pointers
bool USBSerial::init_buffers(uint32_t rsize, uint32_t tsize)
{
// buffer must be able to hold 2 of each packet, plus have room to
if (sizeof(bigbuffer) < (rsize + tsize) * 3 + 2) return false;
rx1 = (uint8_t *)bigbuffer;
rx2 = rx1 + rsize;
tx1 = rx2 + rsize;
tx2 = tx1 + tsize;
rxbuf = tx2 + tsize;
// FIXME: this assume 50-50 split - not true when rsize != tsize
rxsize = (sizeof(bigbuffer) - (rsize + tsize) * 2) / 2;
txsize = rxsize;
txbuf = rxbuf + rxsize;
rxhead = 0;
rxtail = 0;
txhead = 0;
txtail = 0;
rxstate = 0;
return true;
}
void USBSerial::disconnect()
{
}
2017-10-12 23:06:59 -04:00
/************************************************************/
// Control Transfer For Configuration
/************************************************************/
2017-10-12 23:06:59 -04:00
void USBSerial::control(const Transfer_t *transfer)
{
println("control callback (serial)");
control_queued = false;
// set data format
if (pending_control & 1) {
pending_control &= ~1;
mk_setup(setup, 0x40, 4, 8, 0, 0); // data format 8N1
queue_Control_Transfer(device, &setup, NULL, this);
control_queued = true;
return;
}
// set baud rate
if (pending_control & 2) {
pending_control &= ~2;
uint32_t baudval = 3000000 / baudrate;
mk_setup(setup, 0x40, 3, baudval, 0, 0);
queue_Control_Transfer(device, &setup, NULL, this);
control_queued = true;
return;
}
// configure flow control
if (pending_control & 4) {
pending_control &= ~4;
mk_setup(setup, 0x40, 2, 0, 0, 0);
queue_Control_Transfer(device, &setup, NULL, this);
control_queued = true;
return;
}
// set DTR
if (pending_control & 8) {
pending_control &= ~8;
mk_setup(setup, 0x40, 1, 0x0101, 0, 0);
queue_Control_Transfer(device, &setup, NULL, this);
control_queued = true;
return;
}
}
2017-10-12 23:06:59 -04:00
/************************************************************/
// Interrupt-based Data Movement
/************************************************************/
2017-10-12 23:06:59 -04:00
void USBSerial::rx_callback(const Transfer_t *transfer)
{
if (!transfer->driver) return;
((USBSerial *)(transfer->driver))->rx_data(transfer);
}
void USBSerial::tx_callback(const Transfer_t *transfer)
{
if (!transfer->driver) return;
((USBSerial *)(transfer->driver))->tx_data(transfer);
}
void USBSerial::rx_data(const Transfer_t *transfer)
{
uint32_t len = transfer->length - ((transfer->qtd.token >> 16) & 0x7FFF);
// first update rxstate bitmask, since buffer is no longer queued
2017-10-12 23:06:59 -04:00
if (transfer->buffer == rx1) {
rxstate &= 0xFE;
} else if (transfer->buffer == rx2) {
rxstate &= 0xFD;
}
// get start of data and actual length
const uint8_t *p = (const uint8_t *)transfer->buffer;
if (sertype == FTDI) {
2017-10-12 23:06:59 -04:00
if (len >= 2) {
p += 2;
len -= 2;
} else {
len = 0;
}
}
//if (len > 0) {
//print("rx: ");
//print_hexbytes(p, len);
//}
// Copy data from packet buffer to circular buffer.
// Assume the buffer will always have space, since we
// check before queuing the buffers
2017-10-12 23:06:59 -04:00
uint32_t head = rxhead;
uint32_t tail = rxtail;
if (++head >= rxsize) head = 0;
uint32_t avail;
if (len > 0) {
//print("head=", head);
//print(", tail=", tail);
avail = rxsize - head;
//print(", avail=", avail);
//println(", rxsize=", rxsize);
if (avail > len) avail = len;
memcpy(rxbuf + head, p, avail);
if (len <= avail) {
head += avail - 1;
if (head >= rxsize) head = 0;
} else {
head = len - avail - 1;
memcpy(rxbuf, p + avail, head + 1);
}
rxhead = head;
}
2017-10-15 05:39:36 -04:00
// TODO: can be this more efficient? We know from above which
// buffer is no longer queued, so possible skip most of this work?
rx_queue_packets(head, tail);
}
// re-queue packet buffer(s) if possible
void USBSerial::rx_queue_packets(uint32_t head, uint32_t tail)
{
uint32_t avail;
2017-10-12 23:06:59 -04:00
if (head >= tail) {
avail = rxsize - 1 - head + tail;
2017-10-12 23:06:59 -04:00
} else {
avail = tail - head - 1;
2017-10-12 23:06:59 -04:00
}
uint32_t packetsize = rx2 - rx1;
if (avail >= packetsize) {
if ((rxstate & 0x01) == 0) {
queue_Data_Transfer(rxpipe, rx1, packetsize, this);
rxstate |= 0x01;
} else if ((rxstate & 0x02) == 0) {
queue_Data_Transfer(rxpipe, rx2, packetsize, this);
rxstate |= 0x02;
}
if ((rxstate & 0x03) != 0x03 && avail >= packetsize * 2) {
if ((rxstate & 0x01) == 0) {
queue_Data_Transfer(rxpipe, rx1, packetsize, this);
rxstate |= 0x01;
} else if ((rxstate & 0x02) == 0) {
queue_Data_Transfer(rxpipe, rx2, packetsize, this);
rxstate |= 0x02;
}
}
}
}
void USBSerial::tx_data(const Transfer_t *transfer)
{
uint32_t mask;
uint8_t *p = (uint8_t *)transfer->buffer;
if (p == tx1) {
2017-10-15 05:39:36 -04:00
println("tx1:");
mask = 1;
//txstate &= 0xFE;
} else if (p == tx2) {
2017-10-15 05:39:36 -04:00
println("tx2:");
mask = 2;
//txstate &= 0xFD;
} else {
return; // should never happen
}
// check how much more data remains in the transmit buffer
uint32_t head = txhead;
uint32_t tail = txtail;
uint32_t count;
if (head >= tail) {
count = head - tail;
} else {
count = txsize + head - tail;
}
uint32_t packetsize = tx2 - tx1;
if (count < packetsize) {
// not enough data in buffer to fill a full packet
txstate &= ~mask;
return;
}
// immediately transmit another full packet, if we have enough data
println("TX:moar data!!!!");
if (++tail >= txsize) tail = 0;
uint32_t n = txsize - tail;
if (n > packetsize) n = packetsize;
memcpy(p, txbuf + tail, n);
if (n >= packetsize) {
tail += n - 1;
if (tail >= txsize) tail = 0;
} else {
uint32_t len = packetsize - n;
memcpy(p + n, txbuf, len);
tail = len - 1;
2017-10-15 05:39:36 -04:00
}
txtail = tail;
queue_Data_Transfer(txpipe, p, packetsize, this);
2017-10-12 23:06:59 -04:00
}
void USBSerial::timer_event(USBDriverTimer *whichTimer)
{
println("txtimer");
uint32_t count;
uint32_t head = txhead;
uint32_t tail = txtail;
if (head == tail) {
return; // nothing to transmit
} else if (head > tail) {
count = head - tail;
} else {
count = txsize + head - tail;
}
uint8_t *p;
if ((txstate & 0x01) == 0) {
p = tx1;
txstate |= 0x01;
} else if ((txstate & 0x02) == 0) {
p = tx2;
txstate |= 0x02;
} else {
txtimer.start(1200);
return; // no outgoing buffers available, try again later
}
if (++tail >= txsize) tail = 0;
uint32_t n = txsize - tail;
if (n > count) n = count;
memcpy(p, txbuf + tail, n);
if (n >= count) {
tail += n - 1;
if (tail >= txsize) tail = 0;
} else {
uint32_t len = count - n;
memcpy(p + n, txbuf, len);
tail = len - 1;
}
txtail = tail;
queue_Data_Transfer(txpipe, p, count, this);
}
2017-10-12 23:06:59 -04:00
/************************************************************/
// User Functions - must disable USBHQ IRQ for EHCI access
/************************************************************/
2017-10-12 23:06:59 -04:00
void USBSerial::begin(uint32_t baud, uint32_t format)
{
NVIC_DISABLE_IRQ(IRQ_USBHS);
baudrate = baud;
pending_control |= 2;
if (!control_queued) control(NULL);
NVIC_ENABLE_IRQ(IRQ_USBHS);
2017-10-12 23:06:59 -04:00
}
void USBSerial::end(void)
{
// TODO: lower DTR
2017-10-12 23:06:59 -04:00
}
int USBSerial::available(void)
{
if (!device) return 0;
uint32_t head = rxhead;
uint32_t tail = rxtail;
if (head >= tail) return head - tail;
return rxsize + head - tail;
2017-10-12 23:06:59 -04:00
}
int USBSerial::peek(void)
{
if (!device) return -1;
uint32_t head = rxhead;
uint32_t tail = rxtail;
if (head == tail) return -1;
if (++tail >= rxsize) tail = 0;
return rxbuf[tail];
2017-10-12 23:06:59 -04:00
}
int USBSerial::read(void)
{
if (!device) return -1;
uint32_t head = rxhead;
uint32_t tail = rxtail;
if (head == tail) return -1;
if (++tail >= rxsize) tail = 0;
int c = rxbuf[tail];
rxtail = tail;
if ((rxstate & 0x03) != 0x03) {
NVIC_DISABLE_IRQ(IRQ_USBHS);
rx_queue_packets(head, tail);
NVIC_ENABLE_IRQ(IRQ_USBHS);
}
return c;
}
int USBSerial::availableForWrite()
{
if (!device) return 0;
uint32_t head = txhead;
uint32_t tail = txtail;
if (head >= tail) return txsize - 1 - head + tail;
return tail - head - 1;
2017-10-12 23:06:59 -04:00
}
size_t USBSerial::write(uint8_t c)
{
if (!device) return 0;
uint32_t head = txhead;
if (++head >= txsize) head = 0;
while (txtail == head) {
// wait...
}
txbuf[head] = c;
txhead = head;
2017-10-15 05:39:36 -04:00
//print("head=", head);
//println(", tail=", txtail);
// if full packet in buffer and tx packet ready, queue it
NVIC_DISABLE_IRQ(IRQ_USBHS);
uint32_t tail = txtail;
if ((txstate & 0x03) != 0x03) {
// at least one packet buffer is ready to transmit
uint32_t count;
if (head >= tail) {
count = head - tail;
} else {
count = txsize + head - tail;
}
uint32_t packetsize = tx2 - tx1;
if (count >= packetsize) {
//println("txsize=", txsize);
uint8_t *p;
if ((txstate & 0x01) == 0) {
p = tx1;
txstate |= 0x01;
} else /* if ((txstate & 0x02) == 0) */ {
p = tx2;
txstate |= 0x02;
}
// copy data to packet buffer
if (++tail >= txsize) tail = 0;
uint32_t n = txsize - tail;
if (n > packetsize) n = packetsize;
//print("memcpy, offset=", tail);
//println(", len=", n);
memcpy(p, txbuf + tail, n);
if (n >= packetsize) {
tail += n - 1;
if (tail >= txsize) tail = 0;
} else {
//n = txsize - n;
uint32_t len = packetsize - n;
//println("memcpy, offset=0, len=", len);
memcpy(p + n, txbuf, len);
tail = len - 1;
}
txtail = tail;
//println("queue tx packet, newtail=", tail);
queue_Data_Transfer(txpipe, p, packetsize, this);
NVIC_ENABLE_IRQ(IRQ_USBHS);
return 1;
}
}
// otherwise, set a latency timer to later transmit partial packet
txtimer.stop();
txtimer.start(3500);
2017-10-15 05:39:36 -04:00
NVIC_ENABLE_IRQ(IRQ_USBHS);
2017-10-12 23:06:59 -04:00
return 1;
}