USBHost_t36/keyboard.cpp

328 lines
9.3 KiB
C++
Raw Normal View History

2017-02-18 09:09:28 -05:00
/* USB EHCI Host for Teensy 3.6
* Copyright 2017 Paul Stoffregen (paul@pjrc.com)
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <Arduino.h>
2017-03-06 00:33:29 -05:00
#include "USBHost_t36.h" // Read this header first for key info
2017-03-07 10:22:57 -05:00
#include "keylayouts.h" // from Teensyduino core library
2017-02-18 09:09:28 -05:00
typedef struct {
KEYCODE_TYPE code;
uint8_t ascii;
} keycode_extra_t;
typedef struct {
KEYCODE_TYPE code;
KEYCODE_TYPE codeNumlockOff;
uint8_t charNumlockOn; // We will assume when num lock is on we have all characters...
} keycode_numlock_t;
#ifdef M
#undef M
#endif
#define M(n) ((n) & KEYCODE_MASK)
keycode_extra_t keycode_extras[] = {
{M(KEY_ENTER), '\n'},
{M(KEY_ESC), 0x1b},
{M(KEY_TAB), 0x9 }
};
// Some of these mapped to key + shift.
keycode_numlock_t keycode_numlock[] = {
{M(KEYPAD_SLASH), '/', '/'},
{M(KEYPAD_ASTERIX), '*', '*'},
{M(KEYPAD_MINUS), '-', '-'},
{M(KEYPAD_PLUS), '+', '+'},
{M(KEYPAD_ENTER), '\n', '\n'},
{M(KEYPAD_1), 0x80 | M(KEY_END), '1'},
{M(KEYPAD_2), 0x80 | M(KEY_DOWN), '2'},
{M(KEYPAD_3), 0x80 | M(KEY_PAGE_DOWN), '3'},
{M(KEYPAD_4), 0x80 | M(KEY_LEFT), '4'},
{M(KEYPAD_5), 0x00, '5'},
{M(KEYPAD_6), 0x80 | M(KEY_RIGHT), '6'},
{M(KEYPAD_7), 0x80 | M(KEY_HOME), '7'},
{M(KEYPAD_8), 0x80 | M(KEY_UP), '8'},
{M(KEYPAD_9), 0x80 | M(KEY_PAGE_UP), '9'},
{M(KEYPAD_0), 0x80 | M(KEY_INSERT), '0'},
{M(KEYPAD_PERIOD), 0x80 | M(KEY_DELETE), '.'}
};
2017-02-18 09:09:28 -05:00
void KeyboardController::init()
2017-02-18 09:09:28 -05:00
{
contribute_Pipes(mypipes, sizeof(mypipes)/sizeof(Pipe_t));
contribute_Transfers(mytransfers, sizeof(mytransfers)/sizeof(Transfer_t));
2017-02-18 09:09:28 -05:00
driver_ready_for_device(this);
}
bool KeyboardController::claim(Device_t *dev, int type, const uint8_t *descriptors, uint32_t len)
2017-02-18 09:09:28 -05:00
{
println("KeyboardController claim this=", (uint32_t)this, HEX);
2017-02-18 09:09:28 -05:00
// only claim at interface level
if (type != 1) return false;
if (len < 9+9+7) return false;
2017-02-18 09:09:28 -05:00
uint32_t numendpoint = descriptors[4];
if (numendpoint < 1) return false;
if (descriptors[5] != 3) return false; // bInterfaceClass, 3 = HID
if (descriptors[6] != 1) return false; // bInterfaceSubClass, 1 = Boot Device
if (descriptors[7] != 1) return false; // bInterfaceProtocol, 1 = Keyboard
if (descriptors[9] != 9) return false;
if (descriptors[10] != 33) return false; // HID descriptor (ignored, Boot Protocol)
if (descriptors[18] != 7) return false;
if (descriptors[19] != 5) return false; // endpoint descriptor
uint32_t endpoint = descriptors[20];
println("ep = ", endpoint, HEX);
if ((endpoint & 0xF0) != 0x80) return false; // must be IN direction
endpoint &= 0x0F;
if (endpoint == 0) return false;
if (descriptors[21] != 3) return false; // must be interrupt type
uint32_t size = descriptors[22] | (descriptors[23] << 8);
println("packet size = ", size);
if (size != 8) {
return false; // must be 8 bytes for Keyboard Boot Protocol
}
uint32_t interval = descriptors[24];
println("polling interval = ", interval);
datapipe = new_Pipe(dev, 3, endpoint, 1, 8, interval);
datapipe->callback_function = callback;
2017-02-18 09:09:28 -05:00
queue_Data_Transfer(datapipe, report, 8, this);
2017-03-03 09:13:37 -05:00
mk_setup(setup, 0x21, 10, 0, 0, 0); // 10=SET_IDLE
queue_Control_Transfer(dev, &setup, NULL, this);
2017-02-18 09:09:28 -05:00
return true;
}
2017-03-03 09:13:37 -05:00
void KeyboardController::control(const Transfer_t *transfer)
{
}
2017-02-18 09:09:28 -05:00
void KeyboardController::callback(const Transfer_t *transfer)
{
2017-03-07 10:22:57 -05:00
//println("KeyboardController Callback (static)");
2017-02-18 09:09:28 -05:00
if (transfer->driver) {
((KeyboardController *)(transfer->driver))->new_data(transfer);
}
}
2017-03-07 10:22:57 -05:00
void KeyboardController::disconnect()
{
// TODO: free resources
}
// Arduino defined this static weak symbol callback, and their
// examples use it as the only way to detect new key presses,
// so unfortunate as static weak callbacks are, it probably
// needs to be supported for compatibility
extern "C" {
void __keyboardControllerEmptyCallback() { }
}
void keyPressed() __attribute__ ((weak, alias("__keyboardControllerEmptyCallback")));
void keyReleased() __attribute__ ((weak, alias("__keyboardControllerEmptyCallback")));
static bool contains(uint8_t b, const uint8_t *data)
{
if (data[2] == b || data[3] == b || data[4] == b) return true;
if (data[5] == b || data[6] == b || data[7] == b) return true;
return false;
}
2017-02-18 09:09:28 -05:00
void KeyboardController::new_data(const Transfer_t *transfer)
{
processing_new_data_ = true;
println("KeyboardController Callback (member)");
print(" KB Data: ");
print_hexbytes(transfer->buffer, 8);
2017-03-07 10:22:57 -05:00
for (int i=2; i < 8; i++) {
uint32_t key = prev_report[i];
if (key >= 4 && !contains(key, report)) {
key_release(prev_report[0], key);
}
}
for (int i=2; i < 8; i++) {
uint32_t key = report[i];
if (key >= 4 && !contains(key, prev_report)) {
key_press(report[0], key);
}
}
memcpy(prev_report, report, 8);
2017-02-18 09:09:28 -05:00
queue_Data_Transfer(datapipe, report, 8, this);
processing_new_data_ = false;
// See if we have any outstanding leds to update
if (update_leds_) {
updateLEDS();
}
}
void KeyboardController::numLock(bool f) {
if (leds_.numLock != f) {
leds_.numLock = f;
updateLEDS();
}
}
void KeyboardController::capsLock(bool f) {
if (leds_.capsLock != f) {
leds_.capsLock = f;
updateLEDS();
}
}
void KeyboardController::scrollLock(bool f) {
if (leds_.scrollLock != f) {
leds_.scrollLock = f;
updateLEDS();
}
2017-02-18 09:09:28 -05:00
}
2017-03-07 10:22:57 -05:00
void KeyboardController::key_press(uint32_t mod, uint32_t key)
2017-02-18 09:09:28 -05:00
{
2017-03-07 10:22:57 -05:00
// TODO: queue events, perform callback from Task
println(" press, key=", key);
modifiers = mod;
keyOEM = key;
keyCode = convert_to_unicode(mod, key);
println(" unicode = ", keyCode);
if (keyPressedFunction) {
keyPressedFunction(keyCode);
} else {
keyPressed();
}
}
void KeyboardController::key_release(uint32_t mod, uint32_t key)
{
// TODO: queue events, perform callback from Task
println(" release, key=", key);
modifiers = mod;
keyOEM = key;
// Look for modifier keys
if (key == M(KEY_NUM_LOCK)) {
numLock(!leds_.numLock);
// Lets toggle Numlock
} else if (key == M(KEY_CAPS_LOCK)) {
capsLock(!leds_.capsLock);
} else if (key == M(KEY_SCROLL_LOCK)) {
scrollLock(!leds_.scrollLock);
2017-03-07 10:22:57 -05:00
} else {
keyCode = convert_to_unicode(mod, key);
if (keyReleasedFunction) {
keyReleasedFunction(keyCode);
} else {
keyReleased();
}
2017-03-07 10:22:57 -05:00
}
2017-02-18 09:09:28 -05:00
}
2017-03-07 10:22:57 -05:00
uint16_t KeyboardController::convert_to_unicode(uint32_t mod, uint32_t key)
{
// TODO: special keys
// TODO: caps lock
// TODO: dead key sequences
if (key & SHIFT_MASK) {
// Many of these keys will look like they are other keys with shift mask...
// Check for any of our mapped extra keys
for (uint8_t i = 0; i < (sizeof(keycode_numlock)/sizeof(keycode_numlock[0])); i++) {
if (keycode_numlock[i].code == key) {
// See if the user is using numlock or not...
if (leds_.numLock) {
return keycode_numlock[i].charNumlockOn;
} else {
key = keycode_numlock[i].codeNumlockOff;
if (!(key & 0x80)) return key; // we have hard coded value
key &= 0x7f; // mask off the extra and break out to process as other characters...
break;
}
}
}
// If we made it here without doing something then return 0;
if (key & SHIFT_MASK) return 0;
}
2017-03-07 10:22:57 -05:00
if ((mod & 0x02) || (mod & 0x20)) key |= SHIFT_MASK;
if (leds_.capsLock) key ^= SHIFT_MASK; // Caps lock will switch the Shift;
2017-03-07 10:22:57 -05:00
for (int i=0; i < 96; i++) {
if (keycodes_ascii[i] == key) {
if ((mod & 1) || (mod & 0x10)) return (i+32) & 0x1f; // Control key is down
return i + 32;
}
}
// Check for any of our mapped extra keys
for (uint8_t i = 0; i < (sizeof(keycode_extras)/sizeof(keycode_extras[0])); i++) {
if (keycode_extras[i].code == key) {
return keycode_extras[i].ascii;
}
2017-03-07 10:22:57 -05:00
}
2017-03-07 10:22:57 -05:00
#ifdef ISO_8859_1_A0
for (int i=0; i < 96; i++) {
if (keycodes_iso_8859_1[i] == key) return i + 160;
}
#endif
return 0;
}
void KeyboardController::LEDS(uint8_t leds) {
println("Keyboard setLEDS ", leds, HEX);
leds_.byte = leds;
updateLEDS();
}
void KeyboardController::updateLEDS() {
println("KBD: Update LEDS", leds_.byte, HEX);
if (processing_new_data_) {
println(" Update defered");
update_leds_ = true;
return; // defer until later
}
// Now lets tell keyboard new state.
static uint8_t keyboard_keys_report[1] = {0};
setup_t keys_setup;
keyboard_keys_report[0] = leds_.byte;
queue_Data_Transfer(datapipe, report, 8, this);
mk_setup(keys_setup, 0x21, 9, 0x200, 0, sizeof(keyboard_keys_report)); // hopefully this sets leds
queue_Control_Transfer(device, &keys_setup, keyboard_keys_report, this);
update_leds_ = false;
}
2017-03-07 10:22:57 -05:00
2017-02-18 09:09:28 -05:00