1
0
mirror of https://github.com/moparisthebest/Simba synced 2024-11-14 13:25:14 -05:00
Simba/Units/MMLCore/mmath.pas

155 lines
4.3 KiB
ObjectPascal

{
This file is part of the Mufasa Macro Library (MML)
Copyright (c) 2009 by Raymond van Venetië and Merlijn Wajer
MML is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
MML is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with MML. If not, see <http://www.gnu.org/licenses/>.
See the file COPYING, included in this distribution,
for details about the copyright.
Mufasa Math Unit for the Mufasa Macro Library
}
unit mmath;
// mufasa math
{$mode objfpc}{$H+}
interface
uses
Classes, SysUtils,MufasaTypes;
function RotatePoints(const P: TPointArray;const A, cx, cy: Extended): TPointArray;
function RotatePoint(const p: TPoint;const angle, mx, my: Extended): TPoint;
function ChangeDistPT(const PT : TPoint; mx,my : integer; newdist : extended) : TPoint;
function ChangeDistTPA(var TPA : TPointArray; mx,my : integer; newdist : extended) : boolean;
function RiemannGauss(Xstart,StepSize,Sigma : extended; AmountSteps : integer) : extended;
function DiscreteGauss(Xstart,Xend : integer; sigma : extended) : TExtendedArray;
function GaussMatrix(N : integer; sigma : extended) : T2DExtendedArray;
implementation
uses
math;
{/\
Returns a GaussianMatrix with size of X*X, where X is Nth odd-number.
/\}
function GaussMatrix(N : integer; sigma : extended) : T2DExtendedArray;
var
x,y,mid : integer;
Val : TExtendedArray;
begin
N := N * 2- 1;
SetLength(Result,N);
for x := 0 to n-1 do
Setlength(result[x],N);
mid := n div 2;
Val := DiscreteGauss(-mid,mid,sigma);
for x := 0 to n-1 do
for y := 0 to n-1 do
Result[x][y] := Val[x] * Val[y];
end;
{/\
Returns the discrete Gaussian values, uses RiemanGauss with 100 steps.
/\}
function DiscreteGauss(Xstart,Xend : integer; sigma : extended) : TExtendedArray;
var
i : integer;
begin
setlength(Result,Xend-xstart+1);
for i := xstart to xend do
result[i-xstart] := RiemannGauss(i-0.5,0.01,Sigma,100);
end;
{/\
RiemannGauss integrates the Gaussian function using the Riemann method.
/\}
function RiemannGauss(Xstart,StepSize,Sigma : extended; AmountSteps : integer) : extended;
var
i : integer;
x : extended;
begin
result := 0;
x := xstart - 0.5 * stepsize;
for i := 1 to AmountSteps do
begin
x := x + stepsize; //Get the middle value
result := Result + exp(-x*x/(2*sigma*sigma)); //Better accuracy to do the sig^2 here?
end;
result := result * stepsize * 1 / (Sqrt(2 * pi) * sigma);
end;
{/\
Rotates the given points (P) by A (in radians) around the point defined by cx, cy.
/\}
function RotatePoints(const P: TPointArray;const A, cx, cy: Extended): TPointArray;
var
I, L: Integer;
begin
L := High(P);
SetLength(Result, L + 1);
for I := 0 to L do
begin
Result[I].X := Round(cx + cos(A) * (p[i].x - cx) - sin(A) * (p[i].y - cy));
Result[I].Y := Round(cy + sin(A) * (p[i].x - cx) + cos(A) * (p[i].y - cy));
end;
end;
{/\
Rotates the given point (p) by A (in radians) around the point defined by cx, cy.
/\}
function RotatePoint(const p: TPoint;const angle, mx, my: Extended): TPoint;
begin
Result.X := Round(mx + cos(angle) * (p.x - mx) - sin(angle) * (p.y - my));
Result.Y := Round(my + sin(angle) * (p.x - mx) + cos(angle) * (p.y- my));
end;
function ChangeDistPT(const PT : TPoint; mx,my : integer; newdist : extended) : TPoint;
var
angle : extended;
begin
angle := ArcTan2(pt.y-my,pt.x-mx);
result.x := round(cos(angle) * newdist) + mx;
result.y := round(sin(angle) * newdist) + my;
end;
function ChangeDistTPA(var TPA : TPointArray; mx,my : integer; newdist : extended) : boolean;
var
angle : extended;
i : integer;
begin
result := false;
if length(TPA) < 1 then
exit;
result := true;
try
for i := high(TPA) downto 0 do
begin
angle := ArcTan2(TPA[i].y-my,TPA[i].x-mx);
TPA[i].x := round(cos(angle) * newdist) + mx;
TPA[i].y := round(sin(angle) * newdist) + my;
end;
except
result := false;
end;
end;
end.