unit bzip2; {**************************************************************************** BZIP2 decompression unit Copyright (C) 2002 by Daniel Mantione This unit provides a decompression stream to decode .bz2 files. It is inpired by Julian R. Seward's libbzip2 library and therefore you should send credits to him and bug reports to me :) This code is licensed under the same terms as the original libbz2 library, which is decsribed in the file LICENSE. If you don't have this file, look at http://www.freepascal.org for this bzip2 unit, the LICENSE file will be included. In case of problems, contact the author. E-mail addresses: Daniel Mantione Julian R. Seward Please do not contact Julian about this Pascal library, he didn't wrote it. ****************************************************************************} interface {$goto on} uses objects, bzip2comn,classes; Type pstream = ^classes.tstream; Tbzip2_decode_stream=object(objects.Tstream) short:cardinal; readstream:pstream; block_randomized:boolean; blocksize:byte; tt:Pcardinal_array; tt_count:cardinal; rle_run_left,rle_run_data:byte; nextrle:Pbyte; decode_available:cardinal; block_origin:cardinal; current_block:cardinal; read_data,bits_available:byte; inuse16:set of 0..15; inuse:set of 0..255; inuse_count:cardinal; seq_to_unseq:array[0..255] of byte; alphasize:cardinal; group_count,group_pos,gsel,gminlen:byte; group_no:cardinal; glimit,gperm,gbase:Phuffarray; selector_count:cardinal; selector,selector_mtf:array[0..max_selectors] of byte; len:array[0..max_groups,0..max_alpha_size] of byte; limit:array[0..max_groups,0..max_alpha_size] of cardinal; base:array[0..max_groups,0..max_alpha_size] of cardinal; perm:array[0..max_groups,0..max_alpha_size] of cardinal; minlens:array[0..max_groups] of byte; cftab:array[0..257] of cardinal; mtfbase:array[0..256 div mtfl_size-1] of cardinal; mtfa:array[0..mtfa_size-1] of byte; constructor init(Areadstream:pstream); function get_bits(n:byte):byte; function get_boolean:boolean; function get_byte:byte; function get_cardinal24:cardinal; function get_cardinal:cardinal; procedure receive_mapping_table; procedure receive_selectors; procedure undo_mtf_values; procedure receive_coding_tables; procedure make_hufftab; procedure init_mtf; function get_mtf_value:cardinal; procedure move_mtf_block; procedure receive_mtf_values; procedure detransform; function decode_block:boolean; procedure read(var buf;count:Longint);virtual; procedure new_block; procedure consume_rle;inline; procedure rle_read(bufptr:Pbyte;var count:Longint); destructor done;virtual; end; implementation {$ifdef i386} {$i bzip2i386.inc} {$endif} {***************************************************************************** Tbzip2_decode_stream *****************************************************************************} constructor Tbzip2_decode_stream.init(Areadstream:pstream); var magic:array[1..3] of char; c:char; begin readstream:=Areadstream; {Read the magic.} readstream^.read(magic,sizeof(magic)); if magic<>bzip2_stream_magic then begin error(stiniterror,bzip2_bad_header_magic); exit; end; {Read the block size and allocate the working array.} readstream^.read(c,1); blocksize:=byte(c)-byte('0'); getmem(tt,blocksize*100000*sizeof(cardinal)); decode_available:=high(decode_available); end; function Tbzip2_decode_stream.get_bits(n:byte):byte; var data:byte; begin if n>bits_available then begin readstream^.read(data,1); get_bits:=(read_data shr (8-n)) or data shr (8-(n-bits_available)); read_data:=data shl (n-bits_available); inc(bits_available,8); end else begin get_bits:=read_data shr (8-n); read_data:=read_data shl n; end; dec(bits_available,n); end; function Tbzip2_decode_stream.get_boolean:boolean; begin get_boolean:=boolean(get_bits(1)); end; function Tbzip2_decode_stream.get_byte:byte; begin get_byte:=get_bits(8); end; function Tbzip2_decode_stream.get_cardinal24:cardinal; begin get_cardinal24:=get_bits(8) shl 16 or get_bits(8) shl 8 or get_bits(8); end; function Tbzip2_decode_stream.get_cardinal:cardinal; begin get_cardinal:=get_bits(8) shl 24 or get_bits(8) shl 16 or get_bits(8) shl 8 or get_bits(8); end; procedure Tbzip2_decode_stream.receive_mapping_table; {Receive the mapping table. To save space, the inuse set is stored in pieces of 16 bits. First 16 bits are stored which pieces of 16 bits are used, then the pieces follow.} var i,j:byte; begin inuse16:=[]; {Receive the first 16 bits which tell which pieces are stored.} for i:=0 to 15 do if get_boolean then include(inuse16,i); {Receive the used pieces.} inuse:=[]; inuse_count:=0; for i:=0 to 15 do if i in inuse16 then for j:=0 to 15 do if get_boolean then begin include(inuse,16*i+j); seq_to_unseq[inuse_count]:=16*i+j; inc(inuse_count); end; { system.write('Mapping table: '); for i:=0 to 255 do if i in inuse then system.write(i,' '); writeln;} end; procedure Tbzip2_decode_stream.receive_selectors; {Receives the selectors.} var i:cardinal; j:byte; begin group_count:=get_bits(3); selector_count:=get_bits(8) shl 7 or get_bits(7); for i:=0 to selector_count-1 do begin j:=0; while get_boolean do begin inc(j); if j>5 then error(streaderror,bzip2_data_error); end; selector_mtf[i]:=j; end; { system.write('Selector_mtf: '); for i:=0 to selector_count-1 do system.write(selector_mtf[i],' '); writeln;} end; procedure Tbzip2_decode_stream.undo_mtf_values; {Undo the MTF values for the selectors.} var pos:array[0..max_groups] of byte; i:cardinal; v,tmp:byte; begin for v:=0 to group_count-1 do pos[v]:=v; for i:=0 to selector_count-1 do begin v:=selector_mtf[i]; tmp:=pos[v]; while v<>0 do begin pos[v]:=pos[v-1]; dec(v); end; pos[0]:=tmp; selector[i]:=tmp; end; end; procedure Tbzip2_decode_stream.receive_coding_tables; var t,curr:byte; i:cardinal; begin for t:=0 to group_count-1 do begin curr:=get_bits(5); for i:=0 to alphasize-1 do begin repeat if not(curr in [1..20]) then begin error(streaderror,bzip2_data_error); exit; end; if not get_boolean then break; if get_boolean then dec(curr) else inc(curr); until false; len[t,i]:=curr; end; end; { writeln('Coding tables:'); for t:=0 to group_count-1 do begin for i:=0 to alphasize-1 do system.write(len[t,i],' '); writeln; end;} end; procedure Tbzip2_decode_stream.make_hufftab; {Builds the Huffman tables.} var i:cardinal; t,minlen,maxlen:byte; begin for t:=0 to group_count-1 do begin minlen:=32; maxlen:=0; for i:=0 to alphasize-1 do begin if len[t,i]>maxlen then maxlen:=len[t,i]; if len[t,i]glimit^[zn] do begin inc(zn); zvec:=zvec shl 1 or byte(get_boolean); end; get_mtf_value:=gperm^[zvec-gbase^[zn]]; end; procedure Tbzip2_decode_stream.move_mtf_block; var i:byte; j,k:cardinal; begin k:=MTFA_SIZE; for i:=256 div MTFL_SIZE-1 downto 0 do begin j:=mtfbase[i]; Pcardinal(@mtfa[k- 4])^:=Pcardinal(@mtfa[j+12])^; Pcardinal(@mtfa[k- 8])^:=Pcardinal(@mtfa[j+ 8])^; Pcardinal(@mtfa[k-12])^:=Pcardinal(@mtfa[j+ 4])^; dec(k,16); Pcardinal(@mtfa[k ])^:=Pcardinal(@mtfa[j ])^; mtfbase[i]:=k; end; end; procedure Tbzip2_decode_stream.receive_mtf_values; const run_a=0; run_b=1; var t,next_sym:cardinal; es:cardinal; n:byte; nn,i:cardinal; p,q:Pbyte; u,v:Pcardinal; lno,off:cardinal; begin group_no:=high(group_no); group_pos:=0; t:=0; for i:=0 to 257 do cftab[i]:=0; init_mtf; next_sym:=get_mtf_value; while next_sym<>inuse_count+1 do begin { writeln(t,' ',next_sym); if t=22296 then t:=t; } if next_sym<=run_b then begin es:=0; n:=0; repeat inc(es,(next_sym+1) shl n); inc(n); next_sym:=get_mtf_value; until next_sym>run_b; n:=seq_to_unseq[mtfa[mtfbase[0]]]; inc(cftab[n],es); if t+es>100000*blocksize then begin error(streaderror,bzip2_data_error); exit; end; while es>0 do begin tt^[t]:=n; dec(es); inc(t); end; end else begin nn:=next_sym-1; if nnp) do begin q^:=(q-1)^; dec(q); end; u:=@mtfbase; v:=u+lno; repeat mtfa[v^]:=mtfa[(v-1)^+MTFL_SIZE-1]; dec(v); dec(v^); until v=u; mtfa[v^]:=n; if v^=0 then move_mtf_block; end; inc(cftab[seq_to_unseq[n]]); tt^[t]:=cardinal(seq_to_unseq[n]); inc(t); if t>100000*blocksize then begin error(streaderror,bzip2_data_error); exit; end; next_sym:=get_mtf_value; end; end; tt_count:=t; {Setup cftab to facilitate generation of T^(-1).} t:=0; for i:=0 to 256 do begin nn:=cftab[i]; cftab[i]:=t; { writeln(i,' ',t);} inc(t,nn); end; end; {$ifndef HAVE_DETRANSFORM} procedure Tbzip2_decode_stream.detransform; var a:cardinal; p,q,r:Pcardinal; begin a:=0; p:=@tt^[0]; q:=p+tt_count; while p<>q do begin r:=@tt^[cftab[p^ and $ff]]; inc(cftab[p^ and $ff]); r^:=r^ or a; inc(a,256); inc(p); end; end; {$endif} function Tbzip2_decode_stream.decode_block:boolean; {Decode a new compressed block.} var magic:array[1..6] of char; stored_blockcrc:cardinal; i:byte; begin for i:=1 to 6 do magic[i]:=char(get_byte); if magic='1AY&SY' then begin inc(current_block); { writeln('Block ',current_block,': Header ok');} stored_blockcrc:=get_cardinal; block_randomized:=get_boolean; block_origin:=get_cardinal24; {Receive the mapping table.} receive_mapping_table; alphasize:=cardinal(inuse_count)+2; { writeln('Mapping table ok.');} {Receive the selectors.} receive_selectors; if status<>0 then exit; { writeln('Selectors ok.');} {Undo the MTF values for the selectors.} undo_mtf_values; { writeln('Undo mtf ok.');} {Receive the coding tables.} receive_coding_tables; if status<>0 then exit; { writeln('Coding tables ok');} {Build the Huffman tables.} make_hufftab; { writeln('Huffman ok.');} {Receive the MTF values.} receive_mtf_values; { writeln('MTF OK');} {Undo the Burrows Wheeler transformation.} detransform; { writeln('Detransform OK');} decode_available:=tt_count; end else begin if magic<>#$17'rE8P'#$90 then error(streaderror,bzip2_bad_block_magic); decode_block:=false; end; end; procedure Tbzip2_decode_stream.new_block; begin if decode_block then nextrle:=@tt^[tt^[block_origin] shr 8] else begin error(streaderror,bzip2_endoffile); nextrle:=nil; end; end; procedure Tbzip2_decode_stream.consume_rle;inline; {Make nextrle point to the next decoded byte. If nextrle did point to the last byte in the current block, decode the next block.} begin { Pcardinal(nextrle)^:=Pcardinal(nextrle)^ shr 8;} nextrle:=@tt^[Pcardinal(nextrle)^ shr 8]; dec(decode_available); if decode_available=0 then new_block; end; procedure Tbzip2_decode_stream.rle_read(bufptr:Pbyte;var count:Longint); var rle_len:cardinal; data:byte; label rle_write; begin rle_len:=rle_run_left; data:=rle_run_data; if block_randomized then {Not yet implemented.} runerror(212) else begin if rle_len<>0 then {Speed is important. Instead of an if statement within the repeat loop use a goto outside the loop.} goto rle_write; repeat if decode_available=0 then break; rle_len:=1; data:=nextrle^; consume_rle; if (decode_available>0) and (data=nextrle^) then begin inc(rle_len); consume_rle; if (decode_available>0) and (data=nextrle^) then begin inc(rle_len); consume_rle; if (decode_available>0) and (data=nextrle^) then begin consume_rle; inc(rle_len,nextrle^+1); consume_rle; end; end; end; rle_write: repeat bufptr^:=data; inc(bufptr); dec(count); dec(rle_len); until (rle_len=0) or (count=0); until count=0; short:=count; end; rle_run_data:=data; rle_run_left:=rle_len; end; procedure Tbzip2_decode_stream.read(var buf;count:Longint); var bufptr:Pbyte; begin short:=0; bufptr:=@buf; if decode_available=high(decode_available) then begin {Initialize the rle process: - Decode a block - Initialize pointer.} if not decode_block then begin error(streaderror,bzip2_endoffile); nextrle:=nil; end; nextrle:=@tt^[tt^[block_origin] shr 8]; end; rle_read(bufptr,count); end; destructor Tbzip2_decode_stream.done; begin if tt<>nil then freemem(tt,blocksize*100000*sizeof(cardinal)); inherited done; end; end.