1
0
mirror of https://github.com/moparisthebest/SickRage synced 2024-11-14 13:25:11 -05:00
SickRage/lib/bs4/builder/__init__.py
echel0n 0d9fbc1ad7 Welcome to our SickBeard-TVRage Edition ...
This version of SickBeard uses both TVDB and TVRage to search and gather it's series data from allowing you to now have access to and download shows that you couldn't before because of being locked into only what TheTVDB had to offer.

Also this edition is based off the code we used in our XEM editon so it does come with scene numbering support as well as all the other features our XEM edition has to offer.

Please before using this with your existing database (sickbeard.db) please make a backup copy of it and delete any other database files such as cache.db and failed.db if present, we HIGHLY recommend starting out with no database files at all to make this a fresh start but the choice is at your own risk!

Enjoy!
2014-03-09 22:39:12 -07:00

322 lines
11 KiB
Python

from collections import defaultdict
import itertools
import sys
from bs4.element import (
CharsetMetaAttributeValue,
ContentMetaAttributeValue,
whitespace_re
)
__all__ = [
'HTMLTreeBuilder',
'SAXTreeBuilder',
'TreeBuilder',
'TreeBuilderRegistry',
]
# Some useful features for a TreeBuilder to have.
FAST = 'fast'
PERMISSIVE = 'permissive'
STRICT = 'strict'
XML = 'xml'
HTML = 'html'
HTML_5 = 'html5'
class TreeBuilderRegistry(object):
def __init__(self):
self.builders_for_feature = defaultdict(list)
self.builders = []
def register(self, treebuilder_class):
"""Register a treebuilder based on its advertised features."""
for feature in treebuilder_class.features:
self.builders_for_feature[feature].insert(0, treebuilder_class)
self.builders.insert(0, treebuilder_class)
def lookup(self, *features):
if len(self.builders) == 0:
# There are no builders at all.
return None
if len(features) == 0:
# They didn't ask for any features. Give them the most
# recently registered builder.
return self.builders[0]
# Go down the list of features in order, and eliminate any builders
# that don't match every feature.
features = list(features)
features.reverse()
candidates = None
candidate_set = None
while len(features) > 0:
feature = features.pop()
we_have_the_feature = self.builders_for_feature.get(feature, [])
if len(we_have_the_feature) > 0:
if candidates is None:
candidates = we_have_the_feature
candidate_set = set(candidates)
else:
# Eliminate any candidates that don't have this feature.
candidate_set = candidate_set.intersection(
set(we_have_the_feature))
# The only valid candidates are the ones in candidate_set.
# Go through the original list of candidates and pick the first one
# that's in candidate_set.
if candidate_set is None:
return None
for candidate in candidates:
if candidate in candidate_set:
return candidate
return None
# The BeautifulSoup class will take feature lists from developers and use them
# to look up builders in this registry.
builder_registry = TreeBuilderRegistry()
class TreeBuilder(object):
"""Turn a document into a Beautiful Soup object tree."""
features = []
is_xml = False
preserve_whitespace_tags = set()
empty_element_tags = None # A tag will be considered an empty-element
# tag when and only when it has no contents.
# A value for these tag/attribute combinations is a space- or
# comma-separated list of CDATA, rather than a single CDATA.
cdata_list_attributes = {}
def __init__(self):
self.soup = None
def reset(self):
pass
def can_be_empty_element(self, tag_name):
"""Might a tag with this name be an empty-element tag?
The final markup may or may not actually present this tag as
self-closing.
For instance: an HTMLBuilder does not consider a <p> tag to be
an empty-element tag (it's not in
HTMLBuilder.empty_element_tags). This means an empty <p> tag
will be presented as "<p></p>", not "<p />".
The default implementation has no opinion about which tags are
empty-element tags, so a tag will be presented as an
empty-element tag if and only if it has no contents.
"<foo></foo>" will become "<foo />", and "<foo>bar</foo>" will
be left alone.
"""
if self.empty_element_tags is None:
return True
return tag_name in self.empty_element_tags
def feed(self, markup):
raise NotImplementedError()
def prepare_markup(self, markup, user_specified_encoding=None,
document_declared_encoding=None):
return markup, None, None, False
def test_fragment_to_document(self, fragment):
"""Wrap an HTML fragment to make it look like a document.
Different parsers do this differently. For instance, lxml
introduces an empty <head> tag, and html5lib
doesn't. Abstracting this away lets us write simple tests
which run HTML fragments through the parser and compare the
results against other HTML fragments.
This method should not be used outside of tests.
"""
return fragment
def set_up_substitutions(self, tag):
return False
def _replace_cdata_list_attribute_values(self, tag_name, attrs):
"""Replaces class="foo bar" with class=["foo", "bar"]
Modifies its input in place.
"""
if not attrs:
return attrs
if self.cdata_list_attributes:
universal = self.cdata_list_attributes.get('*', [])
tag_specific = self.cdata_list_attributes.get(
tag_name.lower(), None)
for attr in attrs.keys():
if attr in universal or (tag_specific and attr in tag_specific):
# We have a "class"-type attribute whose string
# value is a whitespace-separated list of
# values. Split it into a list.
value = attrs[attr]
if isinstance(value, basestring):
values = whitespace_re.split(value)
else:
# html5lib sometimes calls setAttributes twice
# for the same tag when rearranging the parse
# tree. On the second call the attribute value
# here is already a list. If this happens,
# leave the value alone rather than trying to
# split it again.
values = value
attrs[attr] = values
return attrs
class SAXTreeBuilder(TreeBuilder):
"""A Beautiful Soup treebuilder that listens for SAX events."""
def feed(self, markup):
raise NotImplementedError()
def close(self):
pass
def startElement(self, name, attrs):
attrs = dict((key[1], value) for key, value in list(attrs.items()))
#print "Start %s, %r" % (name, attrs)
self.soup.handle_starttag(name, attrs)
def endElement(self, name):
#print "End %s" % name
self.soup.handle_endtag(name)
def startElementNS(self, nsTuple, nodeName, attrs):
# Throw away (ns, nodeName) for now.
self.startElement(nodeName, attrs)
def endElementNS(self, nsTuple, nodeName):
# Throw away (ns, nodeName) for now.
self.endElement(nodeName)
#handler.endElementNS((ns, node.nodeName), node.nodeName)
def startPrefixMapping(self, prefix, nodeValue):
# Ignore the prefix for now.
pass
def endPrefixMapping(self, prefix):
# Ignore the prefix for now.
# handler.endPrefixMapping(prefix)
pass
def characters(self, content):
self.soup.handle_data(content)
def startDocument(self):
pass
def endDocument(self):
pass
class HTMLTreeBuilder(TreeBuilder):
"""This TreeBuilder knows facts about HTML.
Such as which tags are empty-element tags.
"""
preserve_whitespace_tags = set(['pre', 'textarea'])
empty_element_tags = set(['br' , 'hr', 'input', 'img', 'meta',
'spacer', 'link', 'frame', 'base'])
# The HTML standard defines these attributes as containing a
# space-separated list of values, not a single value. That is,
# class="foo bar" means that the 'class' attribute has two values,
# 'foo' and 'bar', not the single value 'foo bar'. When we
# encounter one of these attributes, we will parse its value into
# a list of values if possible. Upon output, the list will be
# converted back into a string.
cdata_list_attributes = {
"*" : ['class', 'accesskey', 'dropzone'],
"a" : ['rel', 'rev'],
"link" : ['rel', 'rev'],
"td" : ["headers"],
"th" : ["headers"],
"td" : ["headers"],
"form" : ["accept-charset"],
"object" : ["archive"],
# These are HTML5 specific, as are *.accesskey and *.dropzone above.
"area" : ["rel"],
"icon" : ["sizes"],
"iframe" : ["sandbox"],
"output" : ["for"],
}
def set_up_substitutions(self, tag):
# We are only interested in <meta> tags
if tag.name != 'meta':
return False
http_equiv = tag.get('http-equiv')
content = tag.get('content')
charset = tag.get('charset')
# We are interested in <meta> tags that say what encoding the
# document was originally in. This means HTML 5-style <meta>
# tags that provide the "charset" attribute. It also means
# HTML 4-style <meta> tags that provide the "content"
# attribute and have "http-equiv" set to "content-type".
#
# In both cases we will replace the value of the appropriate
# attribute with a standin object that can take on any
# encoding.
meta_encoding = None
if charset is not None:
# HTML 5 style:
# <meta charset="utf8">
meta_encoding = charset
tag['charset'] = CharsetMetaAttributeValue(charset)
elif (content is not None and http_equiv is not None
and http_equiv.lower() == 'content-type'):
# HTML 4 style:
# <meta http-equiv="content-type" content="text/html; charset=utf8">
tag['content'] = ContentMetaAttributeValue(content)
return (meta_encoding is not None)
def register_treebuilders_from(module):
"""Copy TreeBuilders from the given module into this module."""
# I'm fairly sure this is not the best way to do this.
this_module = sys.modules['bs4.builder']
for name in module.__all__:
obj = getattr(module, name)
if issubclass(obj, TreeBuilder):
setattr(this_module, name, obj)
this_module.__all__.append(name)
# Register the builder while we're at it.
this_module.builder_registry.register(obj)
class ParserRejectedMarkup(Exception):
pass
# Builders are registered in reverse order of priority, so that custom
# builder registrations will take precedence. In general, we want lxml
# to take precedence over html5lib, because it's faster. And we only
# want to use HTMLParser as a last result.
from . import _htmlparser
register_treebuilders_from(_htmlparser)
try:
from . import _html5lib
register_treebuilders_from(_html5lib)
except ImportError:
# They don't have html5lib installed.
pass
try:
from . import _lxml
register_treebuilders_from(_lxml)
except ImportError:
# They don't have lxml installed.
pass