1
0
mirror of https://github.com/moparisthebest/SickRage synced 2025-01-13 06:48:06 -05:00
SickRage/lib/requests/packages/chardet/jpcntx.py
echel0n 0d9fbc1ad7 Welcome to our SickBeard-TVRage Edition ...
This version of SickBeard uses both TVDB and TVRage to search and gather it's series data from allowing you to now have access to and download shows that you couldn't before because of being locked into only what TheTVDB had to offer.

Also this edition is based off the code we used in our XEM editon so it does come with scene numbering support as well as all the other features our XEM edition has to offer.

Please before using this with your existing database (sickbeard.db) please make a backup copy of it and delete any other database files such as cache.db and failed.db if present, we HIGHLY recommend starting out with no database files at all to make this a fresh start but the choice is at your own risk!

Enjoy!
2014-03-09 22:39:12 -07:00

220 lines
19 KiB
Python

######################## BEGIN LICENSE BLOCK ########################
# The Original Code is Mozilla Communicator client code.
#
# The Initial Developer of the Original Code is
# Netscape Communications Corporation.
# Portions created by the Initial Developer are Copyright (C) 1998
# the Initial Developer. All Rights Reserved.
#
# Contributor(s):
# Mark Pilgrim - port to Python
#
# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License as published by the Free Software Foundation; either
# version 2.1 of the License, or (at your option) any later version.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with this library; if not, write to the Free Software
# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
# 02110-1301 USA
######################### END LICENSE BLOCK #########################
from .compat import wrap_ord
NUM_OF_CATEGORY = 6
DONT_KNOW = -1
ENOUGH_REL_THRESHOLD = 100
MAX_REL_THRESHOLD = 1000
MINIMUM_DATA_THRESHOLD = 4
# This is hiragana 2-char sequence table, the number in each cell represents its frequency category
jp2CharContext = (
(0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1),
(2,4,0,4,0,3,0,4,0,3,4,4,4,2,4,3,3,4,3,2,3,3,4,2,3,3,3,2,4,1,4,3,3,1,5,4,3,4,3,4,3,5,3,0,3,5,4,2,0,3,1,0,3,3,0,3,3,0,1,1,0,4,3,0,3,3,0,4,0,2,0,3,5,5,5,5,4,0,4,1,0,3,4),
(0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2),
(0,4,0,5,0,5,0,4,0,4,5,4,4,3,5,3,5,1,5,3,4,3,4,4,3,4,3,3,4,3,5,4,4,3,5,5,3,5,5,5,3,5,5,3,4,5,5,3,1,3,2,0,3,4,0,4,2,0,4,2,1,5,3,2,3,5,0,4,0,2,0,5,4,4,5,4,5,0,4,0,0,4,4),
(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),
(0,3,0,4,0,3,0,3,0,4,5,4,3,3,3,3,4,3,5,4,4,3,5,4,4,3,4,3,4,4,4,4,5,3,4,4,3,4,5,5,4,5,5,1,4,5,4,3,0,3,3,1,3,3,0,4,4,0,3,3,1,5,3,3,3,5,0,4,0,3,0,4,4,3,4,3,3,0,4,1,1,3,4),
(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),
(0,4,0,3,0,3,0,4,0,3,4,4,3,2,2,1,2,1,3,1,3,3,3,3,3,4,3,1,3,3,5,3,3,0,4,3,0,5,4,3,3,5,4,4,3,4,4,5,0,1,2,0,1,2,0,2,2,0,1,0,0,5,2,2,1,4,0,3,0,1,0,4,4,3,5,4,3,0,2,1,0,4,3),
(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),
(0,3,0,5,0,4,0,2,1,4,4,2,4,1,4,2,4,2,4,3,3,3,4,3,3,3,3,1,4,2,3,3,3,1,4,4,1,1,1,4,3,3,2,0,2,4,3,2,0,3,3,0,3,1,1,0,0,0,3,3,0,4,2,2,3,4,0,4,0,3,0,4,4,5,3,4,4,0,3,0,0,1,4),
(1,4,0,4,0,4,0,4,0,3,5,4,4,3,4,3,5,4,3,3,4,3,5,4,4,4,4,3,4,2,4,3,3,1,5,4,3,2,4,5,4,5,5,4,4,5,4,4,0,3,2,2,3,3,0,4,3,1,3,2,1,4,3,3,4,5,0,3,0,2,0,4,5,5,4,5,4,0,4,0,0,5,4),
(0,5,0,5,0,4,0,3,0,4,4,3,4,3,3,3,4,0,4,4,4,3,4,3,4,3,3,1,4,2,4,3,4,0,5,4,1,4,5,4,4,5,3,2,4,3,4,3,2,4,1,3,3,3,2,3,2,0,4,3,3,4,3,3,3,4,0,4,0,3,0,4,5,4,4,4,3,0,4,1,0,1,3),
(0,3,1,4,0,3,0,2,0,3,4,4,3,1,4,2,3,3,4,3,4,3,4,3,4,4,3,2,3,1,5,4,4,1,4,4,3,5,4,4,3,5,5,4,3,4,4,3,1,2,3,1,2,2,0,3,2,0,3,1,0,5,3,3,3,4,3,3,3,3,4,4,4,4,5,4,2,0,3,3,2,4,3),
(0,2,0,3,0,1,0,1,0,0,3,2,0,0,2,0,1,0,2,1,3,3,3,1,2,3,1,0,1,0,4,2,1,1,3,3,0,4,3,3,1,4,3,3,0,3,3,2,0,0,0,0,1,0,0,2,0,0,0,0,0,4,1,0,2,3,2,2,2,1,3,3,3,4,4,3,2,0,3,1,0,3,3),
(0,4,0,4,0,3,0,3,0,4,4,4,3,3,3,3,3,3,4,3,4,2,4,3,4,3,3,2,4,3,4,5,4,1,4,5,3,5,4,5,3,5,4,0,3,5,5,3,1,3,3,2,2,3,0,3,4,1,3,3,2,4,3,3,3,4,0,4,0,3,0,4,5,4,4,5,3,0,4,1,0,3,4),
(0,2,0,3,0,3,0,0,0,2,2,2,1,0,1,0,0,0,3,0,3,0,3,0,1,3,1,0,3,1,3,3,3,1,3,3,3,0,1,3,1,3,4,0,0,3,1,1,0,3,2,0,0,0,0,1,3,0,1,0,0,3,3,2,0,3,0,0,0,0,0,3,4,3,4,3,3,0,3,0,0,2,3),
(2,3,0,3,0,2,0,1,0,3,3,4,3,1,3,1,1,1,3,1,4,3,4,3,3,3,0,0,3,1,5,4,3,1,4,3,2,5,5,4,4,4,4,3,3,4,4,4,0,2,1,1,3,2,0,1,2,0,0,1,0,4,1,3,3,3,0,3,0,1,0,4,4,4,5,5,3,0,2,0,0,4,4),
(0,2,0,1,0,3,1,3,0,2,3,3,3,0,3,1,0,0,3,0,3,2,3,1,3,2,1,1,0,0,4,2,1,0,2,3,1,4,3,2,0,4,4,3,1,3,1,3,0,1,0,0,1,0,0,0,1,0,0,0,0,4,1,1,1,2,0,3,0,0,0,3,4,2,4,3,2,0,1,0,0,3,3),
(0,1,0,4,0,5,0,4,0,2,4,4,2,3,3,2,3,3,5,3,3,3,4,3,4,2,3,0,4,3,3,3,4,1,4,3,2,1,5,5,3,4,5,1,3,5,4,2,0,3,3,0,1,3,0,4,2,0,1,3,1,4,3,3,3,3,0,3,0,1,0,3,4,4,4,5,5,0,3,0,1,4,5),
(0,2,0,3,0,3,0,0,0,2,3,1,3,0,4,0,1,1,3,0,3,4,3,2,3,1,0,3,3,2,3,1,3,0,2,3,0,2,1,4,1,2,2,0,0,3,3,0,0,2,0,0,0,1,0,0,0,0,2,2,0,3,2,1,3,3,0,2,0,2,0,0,3,3,1,2,4,0,3,0,2,2,3),
(2,4,0,5,0,4,0,4,0,2,4,4,4,3,4,3,3,3,1,2,4,3,4,3,4,4,5,0,3,3,3,3,2,0,4,3,1,4,3,4,1,4,4,3,3,4,4,3,1,2,3,0,4,2,0,4,1,0,3,3,0,4,3,3,3,4,0,4,0,2,0,3,5,3,4,5,2,0,3,0,0,4,5),
(0,3,0,4,0,1,0,1,0,1,3,2,2,1,3,0,3,0,2,0,2,0,3,0,2,0,0,0,1,0,1,1,0,0,3,1,0,0,0,4,0,3,1,0,2,1,3,0,0,0,0,0,0,3,0,0,0,0,0,0,0,4,2,2,3,1,0,3,0,0,0,1,4,4,4,3,0,0,4,0,0,1,4),
(1,4,1,5,0,3,0,3,0,4,5,4,4,3,5,3,3,4,4,3,4,1,3,3,3,3,2,1,4,1,5,4,3,1,4,4,3,5,4,4,3,5,4,3,3,4,4,4,0,3,3,1,2,3,0,3,1,0,3,3,0,5,4,4,4,4,4,4,3,3,5,4,4,3,3,5,4,0,3,2,0,4,4),
(0,2,0,3,0,1,0,0,0,1,3,3,3,2,4,1,3,0,3,1,3,0,2,2,1,1,0,0,2,0,4,3,1,0,4,3,0,4,4,4,1,4,3,1,1,3,3,1,0,2,0,0,1,3,0,0,0,0,2,0,0,4,3,2,4,3,5,4,3,3,3,4,3,3,4,3,3,0,2,1,0,3,3),
(0,2,0,4,0,3,0,2,0,2,5,5,3,4,4,4,4,1,4,3,3,0,4,3,4,3,1,3,3,2,4,3,0,3,4,3,0,3,4,4,2,4,4,0,4,5,3,3,2,2,1,1,1,2,0,1,5,0,3,3,2,4,3,3,3,4,0,3,0,2,0,4,4,3,5,5,0,0,3,0,2,3,3),
(0,3,0,4,0,3,0,1,0,3,4,3,3,1,3,3,3,0,3,1,3,0,4,3,3,1,1,0,3,0,3,3,0,0,4,4,0,1,5,4,3,3,5,0,3,3,4,3,0,2,0,1,1,1,0,1,3,0,1,2,1,3,3,2,3,3,0,3,0,1,0,1,3,3,4,4,1,0,1,2,2,1,3),
(0,1,0,4,0,4,0,3,0,1,3,3,3,2,3,1,1,0,3,0,3,3,4,3,2,4,2,0,1,0,4,3,2,0,4,3,0,5,3,3,2,4,4,4,3,3,3,4,0,1,3,0,0,1,0,0,1,0,0,0,0,4,2,3,3,3,0,3,0,0,0,4,4,4,5,3,2,0,3,3,0,3,5),
(0,2,0,3,0,0,0,3,0,1,3,0,2,0,0,0,1,0,3,1,1,3,3,0,0,3,0,0,3,0,2,3,1,0,3,1,0,3,3,2,0,4,2,2,0,2,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,2,1,2,0,1,0,1,0,0,0,1,3,1,2,0,0,0,1,0,0,1,4),
(0,3,0,3,0,5,0,1,0,2,4,3,1,3,3,2,1,1,5,2,1,0,5,1,2,0,0,0,3,3,2,2,3,2,4,3,0,0,3,3,1,3,3,0,2,5,3,4,0,3,3,0,1,2,0,2,2,0,3,2,0,2,2,3,3,3,0,2,0,1,0,3,4,4,2,5,4,0,3,0,0,3,5),
(0,3,0,3,0,3,0,1,0,3,3,3,3,0,3,0,2,0,2,1,1,0,2,0,1,0,0,0,2,1,0,0,1,0,3,2,0,0,3,3,1,2,3,1,0,3,3,0,0,1,0,0,0,0,0,2,0,0,0,0,0,2,3,1,2,3,0,3,0,1,0,3,2,1,0,4,3,0,1,1,0,3,3),
(0,4,0,5,0,3,0,3,0,4,5,5,4,3,5,3,4,3,5,3,3,2,5,3,4,4,4,3,4,3,4,5,5,3,4,4,3,4,4,5,4,4,4,3,4,5,5,4,2,3,4,2,3,4,0,3,3,1,4,3,2,4,3,3,5,5,0,3,0,3,0,5,5,5,5,4,4,0,4,0,1,4,4),
(0,4,0,4,0,3,0,3,0,3,5,4,4,2,3,2,5,1,3,2,5,1,4,2,3,2,3,3,4,3,3,3,3,2,5,4,1,3,3,5,3,4,4,0,4,4,3,1,1,3,1,0,2,3,0,2,3,0,3,0,0,4,3,1,3,4,0,3,0,2,0,4,4,4,3,4,5,0,4,0,0,3,4),
(0,3,0,3,0,3,1,2,0,3,4,4,3,3,3,0,2,2,4,3,3,1,3,3,3,1,1,0,3,1,4,3,2,3,4,4,2,4,4,4,3,4,4,3,2,4,4,3,1,3,3,1,3,3,0,4,1,0,2,2,1,4,3,2,3,3,5,4,3,3,5,4,4,3,3,0,4,0,3,2,2,4,4),
(0,2,0,1,0,0,0,0,0,1,2,1,3,0,0,0,0,0,2,0,1,2,1,0,0,1,0,0,0,0,3,0,0,1,0,1,1,3,1,0,0,0,1,1,0,1,1,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,1,2,2,0,3,4,0,0,0,1,1,0,0,1,0,0,0,0,0,1,1),
(0,1,0,0,0,1,0,0,0,0,4,0,4,1,4,0,3,0,4,0,3,0,4,0,3,0,3,0,4,1,5,1,4,0,0,3,0,5,0,5,2,0,1,0,0,0,2,1,4,0,1,3,0,0,3,0,0,3,1,1,4,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0),
(1,4,0,5,0,3,0,2,0,3,5,4,4,3,4,3,5,3,4,3,3,0,4,3,3,3,3,3,3,2,4,4,3,1,3,4,4,5,4,4,3,4,4,1,3,5,4,3,3,3,1,2,2,3,3,1,3,1,3,3,3,5,3,3,4,5,0,3,0,3,0,3,4,3,4,4,3,0,3,0,2,4,3),
(0,1,0,4,0,0,0,0,0,1,4,0,4,1,4,2,4,0,3,0,1,0,1,0,0,0,0,0,2,0,3,1,1,1,0,3,0,0,0,1,2,1,0,0,1,1,1,1,0,1,0,0,0,1,0,0,3,0,0,0,0,3,2,0,2,2,0,1,0,0,0,2,3,2,3,3,0,0,0,0,2,1,0),
(0,5,1,5,0,3,0,3,0,5,4,4,5,1,5,3,3,0,4,3,4,3,5,3,4,3,3,2,4,3,4,3,3,0,3,3,1,4,4,3,4,4,4,3,4,5,5,3,2,3,1,1,3,3,1,3,1,1,3,3,2,4,5,3,3,5,0,4,0,3,0,4,4,3,5,3,3,0,3,4,0,4,3),
(0,5,0,5,0,3,0,2,0,4,4,3,5,2,4,3,3,3,4,4,4,3,5,3,5,3,3,1,4,0,4,3,3,0,3,3,0,4,4,4,4,5,4,3,3,5,5,3,2,3,1,2,3,2,0,1,0,0,3,2,2,4,4,3,1,5,0,4,0,3,0,4,3,1,3,2,1,0,3,3,0,3,3),
(0,4,0,5,0,5,0,4,0,4,5,5,5,3,4,3,3,2,5,4,4,3,5,3,5,3,4,0,4,3,4,4,3,2,4,4,3,4,5,4,4,5,5,0,3,5,5,4,1,3,3,2,3,3,1,3,1,0,4,3,1,4,4,3,4,5,0,4,0,2,0,4,3,4,4,3,3,0,4,0,0,5,5),
(0,4,0,4,0,5,0,1,1,3,3,4,4,3,4,1,3,0,5,1,3,0,3,1,3,1,1,0,3,0,3,3,4,0,4,3,0,4,4,4,3,4,4,0,3,5,4,1,0,3,0,0,2,3,0,3,1,0,3,1,0,3,2,1,3,5,0,3,0,1,0,3,2,3,3,4,4,0,2,2,0,4,4),
(2,4,0,5,0,4,0,3,0,4,5,5,4,3,5,3,5,3,5,3,5,2,5,3,4,3,3,4,3,4,5,3,2,1,5,4,3,2,3,4,5,3,4,1,2,5,4,3,0,3,3,0,3,2,0,2,3,0,4,1,0,3,4,3,3,5,0,3,0,1,0,4,5,5,5,4,3,0,4,2,0,3,5),
(0,5,0,4,0,4,0,2,0,5,4,3,4,3,4,3,3,3,4,3,4,2,5,3,5,3,4,1,4,3,4,4,4,0,3,5,0,4,4,4,4,5,3,1,3,4,5,3,3,3,3,3,3,3,0,2,2,0,3,3,2,4,3,3,3,5,3,4,1,3,3,5,3,2,0,0,0,0,4,3,1,3,3),
(0,1,0,3,0,3,0,1,0,1,3,3,3,2,3,3,3,0,3,0,0,0,3,1,3,0,0,0,2,2,2,3,0,0,3,2,0,1,2,4,1,3,3,0,0,3,3,3,0,1,0,0,2,1,0,0,3,0,3,1,0,3,0,0,1,3,0,2,0,1,0,3,3,1,3,3,0,0,1,1,0,3,3),
(0,2,0,3,0,2,1,4,0,2,2,3,1,1,3,1,1,0,2,0,3,1,2,3,1,3,0,0,1,0,4,3,2,3,3,3,1,4,2,3,3,3,3,1,0,3,1,4,0,1,1,0,1,2,0,1,1,0,1,1,0,3,1,3,2,2,0,1,0,0,0,2,3,3,3,1,0,0,0,0,0,2,3),
(0,5,0,4,0,5,0,2,0,4,5,5,3,3,4,3,3,1,5,4,4,2,4,4,4,3,4,2,4,3,5,5,4,3,3,4,3,3,5,5,4,5,5,1,3,4,5,3,1,4,3,1,3,3,0,3,3,1,4,3,1,4,5,3,3,5,0,4,0,3,0,5,3,3,1,4,3,0,4,0,1,5,3),
(0,5,0,5,0,4,0,2,0,4,4,3,4,3,3,3,3,3,5,4,4,4,4,4,4,5,3,3,5,2,4,4,4,3,4,4,3,3,4,4,5,5,3,3,4,3,4,3,3,4,3,3,3,3,1,2,2,1,4,3,3,5,4,4,3,4,0,4,0,3,0,4,4,4,4,4,1,0,4,2,0,2,4),
(0,4,0,4,0,3,0,1,0,3,5,2,3,0,3,0,2,1,4,2,3,3,4,1,4,3,3,2,4,1,3,3,3,0,3,3,0,0,3,3,3,5,3,3,3,3,3,2,0,2,0,0,2,0,0,2,0,0,1,0,0,3,1,2,2,3,0,3,0,2,0,4,4,3,3,4,1,0,3,0,0,2,4),
(0,0,0,4,0,0,0,0,0,0,1,0,1,0,2,0,0,0,0,0,1,0,2,0,1,0,0,0,0,0,3,1,3,0,3,2,0,0,0,1,0,3,2,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,4,0,2,0,0,0,0,0,0,2),
(0,2,1,3,0,2,0,2,0,3,3,3,3,1,3,1,3,3,3,3,3,3,4,2,2,1,2,1,4,0,4,3,1,3,3,3,2,4,3,5,4,3,3,3,3,3,3,3,0,1,3,0,2,0,0,1,0,0,1,0,0,4,2,0,2,3,0,3,3,0,3,3,4,2,3,1,4,0,1,2,0,2,3),
(0,3,0,3,0,1,0,3,0,2,3,3,3,0,3,1,2,0,3,3,2,3,3,2,3,2,3,1,3,0,4,3,2,0,3,3,1,4,3,3,2,3,4,3,1,3,3,1,1,0,1,1,0,1,0,1,0,1,0,0,0,4,1,1,0,3,0,3,1,0,2,3,3,3,3,3,1,0,0,2,0,3,3),
(0,0,0,0,0,0,0,0,0,0,3,0,2,0,3,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,3,0,3,0,3,1,0,1,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,2,0,2,3,0,0,0,0,0,0,0,0,3),
(0,2,0,3,1,3,0,3,0,2,3,3,3,1,3,1,3,1,3,1,3,3,3,1,3,0,2,3,1,1,4,3,3,2,3,3,1,2,2,4,1,3,3,0,1,4,2,3,0,1,3,0,3,0,0,1,3,0,2,0,0,3,3,2,1,3,0,3,0,2,0,3,4,4,4,3,1,0,3,0,0,3,3),
(0,2,0,1,0,2,0,0,0,1,3,2,2,1,3,0,1,1,3,0,3,2,3,1,2,0,2,0,1,1,3,3,3,0,3,3,1,1,2,3,2,3,3,1,2,3,2,0,0,1,0,0,0,0,0,0,3,0,1,0,0,2,1,2,1,3,0,3,0,0,0,3,4,4,4,3,2,0,2,0,0,2,4),
(0,0,0,1,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,2,2,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,3,1,0,0,0,0,0,0,0,3),
(0,3,0,3,0,2,0,3,0,3,3,3,2,3,2,2,2,0,3,1,3,3,3,2,3,3,0,0,3,0,3,2,2,0,2,3,1,4,3,4,3,3,2,3,1,5,4,4,0,3,1,2,1,3,0,3,1,1,2,0,2,3,1,3,1,3,0,3,0,1,0,3,3,4,4,2,1,0,2,1,0,2,4),
(0,1,0,3,0,1,0,2,0,1,4,2,5,1,4,0,2,0,2,1,3,1,4,0,2,1,0,0,2,1,4,1,1,0,3,3,0,5,1,3,2,3,3,1,0,3,2,3,0,1,0,0,0,0,0,0,1,0,0,0,0,4,0,1,0,3,0,2,0,1,0,3,3,3,4,3,3,0,0,0,0,2,3),
(0,0,0,1,0,0,0,0,0,0,2,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,1,0,0,0,0,0,3),
(0,1,0,3,0,4,0,3,0,2,4,3,1,0,3,2,2,1,3,1,2,2,3,1,1,1,2,1,3,0,1,2,0,1,3,2,1,3,0,5,5,1,0,0,1,3,2,1,0,3,0,0,1,0,0,0,0,0,3,4,0,1,1,1,3,2,0,2,0,1,0,2,3,3,1,2,3,0,1,0,1,0,4),
(0,0,0,1,0,3,0,3,0,2,2,1,0,0,4,0,3,0,3,1,3,0,3,0,3,0,1,0,3,0,3,1,3,0,3,3,0,0,1,2,1,1,1,0,1,2,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,2,2,1,2,0,0,2,0,0,0,0,2,3,3,3,3,0,0,0,0,1,4),
(0,0,0,3,0,3,0,0,0,0,3,1,1,0,3,0,1,0,2,0,1,0,0,0,0,0,0,0,1,0,3,0,2,0,2,3,0,0,2,2,3,1,2,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0,0,2,3),
(2,4,0,5,0,5,0,4,0,3,4,3,3,3,4,3,3,3,4,3,4,4,5,4,5,5,5,2,3,0,5,5,4,1,5,4,3,1,5,4,3,4,4,3,3,4,3,3,0,3,2,0,2,3,0,3,0,0,3,3,0,5,3,2,3,3,0,3,0,3,0,3,4,5,4,5,3,0,4,3,0,3,4),
(0,3,0,3,0,3,0,3,0,3,3,4,3,2,3,2,3,0,4,3,3,3,3,3,3,3,3,0,3,2,4,3,3,1,3,4,3,4,4,4,3,4,4,3,2,4,4,1,0,2,0,0,1,1,0,2,0,0,3,1,0,5,3,2,1,3,0,3,0,1,2,4,3,2,4,3,3,0,3,2,0,4,4),
(0,3,0,3,0,1,0,0,0,1,4,3,3,2,3,1,3,1,4,2,3,2,4,2,3,4,3,0,2,2,3,3,3,0,3,3,3,0,3,4,1,3,3,0,3,4,3,3,0,1,1,0,1,0,0,0,4,0,3,0,0,3,1,2,1,3,0,4,0,1,0,4,3,3,4,3,3,0,2,0,0,3,3),
(0,3,0,4,0,1,0,3,0,3,4,3,3,0,3,3,3,1,3,1,3,3,4,3,3,3,0,0,3,1,5,3,3,1,3,3,2,5,4,3,3,4,5,3,2,5,3,4,0,1,0,0,0,0,0,2,0,0,1,1,0,4,2,2,1,3,0,3,0,2,0,4,4,3,5,3,2,0,1,1,0,3,4),
(0,5,0,4,0,5,0,2,0,4,4,3,3,2,3,3,3,1,4,3,4,1,5,3,4,3,4,0,4,2,4,3,4,1,5,4,0,4,4,4,4,5,4,1,3,5,4,2,1,4,1,1,3,2,0,3,1,0,3,2,1,4,3,3,3,4,0,4,0,3,0,4,4,4,3,3,3,0,4,2,0,3,4),
(1,4,0,4,0,3,0,1,0,3,3,3,1,1,3,3,2,2,3,3,1,0,3,2,2,1,2,0,3,1,2,1,2,0,3,2,0,2,2,3,3,4,3,0,3,3,1,2,0,1,1,3,1,2,0,0,3,0,1,1,0,3,2,2,3,3,0,3,0,0,0,2,3,3,4,3,3,0,1,0,0,1,4),
(0,4,0,4,0,4,0,0,0,3,4,4,3,1,4,2,3,2,3,3,3,1,4,3,4,0,3,0,4,2,3,3,2,2,5,4,2,1,3,4,3,4,3,1,3,3,4,2,0,2,1,0,3,3,0,0,2,0,3,1,0,4,4,3,4,3,0,4,0,1,0,2,4,4,4,4,4,0,3,2,0,3,3),
(0,0,0,1,0,4,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,3,2,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,2),
(0,2,0,3,0,4,0,4,0,1,3,3,3,0,4,0,2,1,2,1,1,1,2,0,3,1,1,0,1,0,3,1,0,0,3,3,2,0,1,1,0,0,0,0,0,1,0,2,0,2,2,0,3,1,0,0,1,0,1,1,0,1,2,0,3,0,0,0,0,1,0,0,3,3,4,3,1,0,1,0,3,0,2),
(0,0,0,3,0,5,0,0,0,0,1,0,2,0,3,1,0,1,3,0,0,0,2,0,0,0,1,0,0,0,1,1,0,0,4,0,0,0,2,3,0,1,4,1,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,1,0,0,0,0,0,0,0,2,0,0,3,0,0,0,0,0,3),
(0,2,0,5,0,5,0,1,0,2,4,3,3,2,5,1,3,2,3,3,3,0,4,1,2,0,3,0,4,0,2,2,1,1,5,3,0,0,1,4,2,3,2,0,3,3,3,2,0,2,4,1,1,2,0,1,1,0,3,1,0,1,3,1,2,3,0,2,0,0,0,1,3,5,4,4,4,0,3,0,0,1,3),
(0,4,0,5,0,4,0,4,0,4,5,4,3,3,4,3,3,3,4,3,4,4,5,3,4,5,4,2,4,2,3,4,3,1,4,4,1,3,5,4,4,5,5,4,4,5,5,5,2,3,3,1,4,3,1,3,3,0,3,3,1,4,3,4,4,4,0,3,0,4,0,3,3,4,4,5,0,0,4,3,0,4,5),
(0,4,0,4,0,3,0,3,0,3,4,4,4,3,3,2,4,3,4,3,4,3,5,3,4,3,2,1,4,2,4,4,3,1,3,4,2,4,5,5,3,4,5,4,1,5,4,3,0,3,2,2,3,2,1,3,1,0,3,3,3,5,3,3,3,5,4,4,2,3,3,4,3,3,3,2,1,0,3,2,1,4,3),
(0,4,0,5,0,4,0,3,0,3,5,5,3,2,4,3,4,0,5,4,4,1,4,4,4,3,3,3,4,3,5,5,2,3,3,4,1,2,5,5,3,5,5,2,3,5,5,4,0,3,2,0,3,3,1,1,5,1,4,1,0,4,3,2,3,5,0,4,0,3,0,5,4,3,4,3,0,0,4,1,0,4,4),
(1,3,0,4,0,2,0,2,0,2,5,5,3,3,3,3,3,0,4,2,3,4,4,4,3,4,0,0,3,4,5,4,3,3,3,3,2,5,5,4,5,5,5,4,3,5,5,5,1,3,1,0,1,0,0,3,2,0,4,2,0,5,2,3,2,4,1,3,0,3,0,4,5,4,5,4,3,0,4,2,0,5,4),
(0,3,0,4,0,5,0,3,0,3,4,4,3,2,3,2,3,3,3,3,3,2,4,3,3,2,2,0,3,3,3,3,3,1,3,3,3,0,4,4,3,4,4,1,1,4,4,2,0,3,1,0,1,1,0,4,1,0,2,3,1,3,3,1,3,4,0,3,0,1,0,3,1,3,0,0,1,0,2,0,0,4,4),
(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),
(0,3,0,3,0,2,0,3,0,1,5,4,3,3,3,1,4,2,1,2,3,4,4,2,4,4,5,0,3,1,4,3,4,0,4,3,3,3,2,3,2,5,3,4,3,2,2,3,0,0,3,0,2,1,0,1,2,0,0,0,0,2,1,1,3,1,0,2,0,4,0,3,4,4,4,5,2,0,2,0,0,1,3),
(0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,1,0,0,1,1,0,0,0,4,2,1,1,0,1,0,3,2,0,0,3,1,1,1,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,1,0,0,0,2,0,0,0,1,4,0,4,2,1,0,0,0,0,0,1),
(0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,0,0,0,0,0,0,1,0,1,0,0,0,0,3,1,0,0,0,2,0,2,1,0,0,1,2,1,0,1,1,0,0,3,0,0,0,0,0,0,0,0,0,0,0,1,3,1,0,0,0,0,0,1,0,0,2,1,0,0,0,0,0,0,0,0,2),
(0,4,0,4,0,4,0,3,0,4,4,3,4,2,4,3,2,0,4,4,4,3,5,3,5,3,3,2,4,2,4,3,4,3,1,4,0,2,3,4,4,4,3,3,3,4,4,4,3,4,1,3,4,3,2,1,2,1,3,3,3,4,4,3,3,5,0,4,0,3,0,4,3,3,3,2,1,0,3,0,0,3,3),
(0,4,0,3,0,3,0,3,0,3,5,5,3,3,3,3,4,3,4,3,3,3,4,4,4,3,3,3,3,4,3,5,3,3,1,3,2,4,5,5,5,5,4,3,4,5,5,3,2,2,3,3,3,3,2,3,3,1,2,3,2,4,3,3,3,4,0,4,0,2,0,4,3,2,2,1,2,0,3,0,0,4,1),
)
class JapaneseContextAnalysis:
def __init__(self):
self.reset()
def reset(self):
self._mTotalRel = 0 # total sequence received
# category counters, each interger counts sequence in its category
self._mRelSample = [0] * NUM_OF_CATEGORY
# if last byte in current buffer is not the last byte of a character,
# we need to know how many bytes to skip in next buffer
self._mNeedToSkipCharNum = 0
self._mLastCharOrder = -1 # The order of previous char
# If this flag is set to True, detection is done and conclusion has
# been made
self._mDone = False
def feed(self, aBuf, aLen):
if self._mDone:
return
# The buffer we got is byte oriented, and a character may span in more than one
# buffers. In case the last one or two byte in last buffer is not
# complete, we record how many byte needed to complete that character
# and skip these bytes here. We can choose to record those bytes as
# well and analyse the character once it is complete, but since a
# character will not make much difference, by simply skipping
# this character will simply our logic and improve performance.
i = self._mNeedToSkipCharNum
while i < aLen:
order, charLen = self.get_order(aBuf[i:i + 2])
i += charLen
if i > aLen:
self._mNeedToSkipCharNum = i - aLen
self._mLastCharOrder = -1
else:
if (order != -1) and (self._mLastCharOrder != -1):
self._mTotalRel += 1
if self._mTotalRel > MAX_REL_THRESHOLD:
self._mDone = True
break
self._mRelSample[jp2CharContext[self._mLastCharOrder][order]] += 1
self._mLastCharOrder = order
def got_enough_data(self):
return self._mTotalRel > ENOUGH_REL_THRESHOLD
def get_confidence(self):
# This is just one way to calculate confidence. It works well for me.
if self._mTotalRel > MINIMUM_DATA_THRESHOLD:
return (self._mTotalRel - self._mRelSample[0]) / self._mTotalRel
else:
return DONT_KNOW
def get_order(self, aBuf):
return -1, 1
class SJISContextAnalysis(JapaneseContextAnalysis):
def get_order(self, aBuf):
if not aBuf:
return -1, 1
# find out current char's byte length
first_char = wrap_ord(aBuf[0])
if ((0x81 <= first_char <= 0x9F) or (0xE0 <= first_char <= 0xFC)):
charLen = 2
else:
charLen = 1
# return its order if it is hiragana
if len(aBuf) > 1:
second_char = wrap_ord(aBuf[1])
if (first_char == 202) and (0x9F <= second_char <= 0xF1):
return second_char - 0x9F, charLen
return -1, charLen
class EUCJPContextAnalysis(JapaneseContextAnalysis):
def get_order(self, aBuf):
if not aBuf:
return -1, 1
# find out current char's byte length
first_char = wrap_ord(aBuf[0])
if (first_char == 0x8E) or (0xA1 <= first_char <= 0xFE):
charLen = 2
elif first_char == 0x8F:
charLen = 3
else:
charLen = 1
# return its order if it is hiragana
if len(aBuf) > 1:
second_char = wrap_ord(aBuf[1])
if (first_char == 0xA4) and (0xA1 <= second_char <= 0xF3):
return second_char - 0xA1, charLen
return -1, charLen
# flake8: noqa