1
0
mirror of https://github.com/moparisthebest/SickRage synced 2024-12-12 11:02:21 -05:00
SickRage/lib/guessit/textutils.py
echel0n 0d9fbc1ad7 Welcome to our SickBeard-TVRage Edition ...
This version of SickBeard uses both TVDB and TVRage to search and gather it's series data from allowing you to now have access to and download shows that you couldn't before because of being locked into only what TheTVDB had to offer.

Also this edition is based off the code we used in our XEM editon so it does come with scene numbering support as well as all the other features our XEM edition has to offer.

Please before using this with your existing database (sickbeard.db) please make a backup copy of it and delete any other database files such as cache.db and failed.db if present, we HIGHLY recommend starting out with no database files at all to make this a fresh start but the choice is at your own risk!

Enjoy!
2014-03-09 22:39:12 -07:00

222 lines
6.0 KiB
Python

#!/usr/bin/env python2
# -*- coding: utf-8 -*-
#
# Smewt - A smart collection manager
# Copyright (c) 2008-2012 Nicolas Wack <wackou@gmail.com>
#
# Smewt is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# Smewt is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
from __future__ import unicode_literals
from guessit import s
from guessit.patterns import sep
import functools
import unicodedata
import re
# string-related functions
def normalize_unicode(s):
return unicodedata.normalize('NFC', s)
def strip_brackets(s):
if not s:
return s
if ((s[0] == '[' and s[-1] == ']') or
(s[0] == '(' and s[-1] == ')') or
(s[0] == '{' and s[-1] == '}')):
return s[1:-1]
return s
def clean_string(s):
for c in sep[:-2]: # do not remove dashes ('-')
s = s.replace(c, ' ')
parts = s.split()
result = ' '.join(p for p in parts if p != '')
# now also remove dashes on the outer part of the string
while result and result[0] in sep:
result = result[1:]
while result and result[-1] in sep:
result = result[:-1]
return result
_words_rexp = re.compile('\w+', re.UNICODE)
def find_words(s):
return _words_rexp.findall(s.replace('_', ' '))
def reorder_title(title):
ltitle = title.lower()
if ltitle[-4:] == ',the':
return title[-3:] + ' ' + title[:-4]
if ltitle[-5:] == ', the':
return title[-3:] + ' ' + title[:-5]
return title
def str_replace(string, pos, c):
return string[:pos] + c + string[pos+1:]
def str_fill(string, region, c):
start, end = region
return string[:start] + c * (end - start) + string[end:]
def levenshtein(a, b):
if not a:
return len(b)
if not b:
return len(a)
m = len(a)
n = len(b)
d = []
for i in range(m+1):
d.append([0] * (n+1))
for i in range(m+1):
d[i][0] = i
for j in range(n+1):
d[0][j] = j
for i in range(1, m+1):
for j in range(1, n+1):
if a[i-1] == b[j-1]:
cost = 0
else:
cost = 1
d[i][j] = min(d[i-1][j] + 1, # deletion
d[i][j-1] + 1, # insertion
d[i-1][j-1] + cost # substitution
)
return d[m][n]
# group-related functions
def find_first_level_groups_span(string, enclosing):
"""Return a list of pairs (start, end) for the groups delimited by the given
enclosing characters.
This does not return nested groups, ie: '(ab(c)(d))' will return a single group
containing the whole string.
>>> find_first_level_groups_span('abcd', '()')
[]
>>> find_first_level_groups_span('abc(de)fgh', '()')
[(3, 7)]
>>> find_first_level_groups_span('(ab(c)(d))', '()')
[(0, 10)]
>>> find_first_level_groups_span('ab[c]de[f]gh(i)', '[]')
[(2, 5), (7, 10)]
"""
opening, closing = enclosing
depth = [] # depth is a stack of indices where we opened a group
result = []
for i, c, in enumerate(string):
if c == opening:
depth.append(i)
elif c == closing:
try:
start = depth.pop()
end = i
if not depth:
# we emptied our stack, so we have a 1st level group
result.append((start, end+1))
except IndexError:
# we closed a group which was not opened before
pass
return result
def split_on_groups(string, groups):
"""Split the given string using the different known groups for boundaries.
>>> s(split_on_groups('0123456789', [ (2, 4) ]))
['01', '23', '456789']
>>> s(split_on_groups('0123456789', [ (2, 4), (4, 6) ]))
['01', '23', '45', '6789']
>>> s(split_on_groups('0123456789', [ (5, 7), (2, 4) ]))
['01', '23', '4', '56', '789']
"""
if not groups:
return [ string ]
boundaries = sorted(set(functools.reduce(lambda l, x: l + list(x), groups, [])))
if boundaries[0] != 0:
boundaries.insert(0, 0)
if boundaries[-1] != len(string):
boundaries.append(len(string))
groups = [ string[start:end] for start, end in zip(boundaries[:-1],
boundaries[1:]) ]
return [ g for g in groups if g ] # return only non-empty groups
def find_first_level_groups(string, enclosing, blank_sep=None):
"""Return a list of groups that could be split because of explicit grouping.
The groups are delimited by the given enclosing characters.
You can also specify if you want to blank the separator chars in the returned
list of groups by specifying a character for it. None means it won't be replaced.
This does not return nested groups, ie: '(ab(c)(d))' will return a single group
containing the whole string.
>>> s(find_first_level_groups('', '()'))
['']
>>> s(find_first_level_groups('abcd', '()'))
['abcd']
>>> s(find_first_level_groups('abc(de)fgh', '()'))
['abc', '(de)', 'fgh']
>>> s(find_first_level_groups('(ab(c)(d))', '()', blank_sep = '_'))
['_ab(c)(d)_']
>>> s(find_first_level_groups('ab[c]de[f]gh(i)', '[]'))
['ab', '[c]', 'de', '[f]', 'gh(i)']
>>> s(find_first_level_groups('()[]()', '()', blank_sep = '-'))
['--', '[]', '--']
"""
groups = find_first_level_groups_span(string, enclosing)
if blank_sep:
for start, end in groups:
string = str_replace(string, start, blank_sep)
string = str_replace(string, end-1, blank_sep)
return split_on_groups(string, groups)