1
0
mirror of https://github.com/moparisthebest/SickRage synced 2024-10-31 23:45:02 -04:00
SickRage/lib/hachoir_core/benchmark.py
echel0n 0d9fbc1ad7 Welcome to our SickBeard-TVRage Edition ...
This version of SickBeard uses both TVDB and TVRage to search and gather it's series data from allowing you to now have access to and download shows that you couldn't before because of being locked into only what TheTVDB had to offer.

Also this edition is based off the code we used in our XEM editon so it does come with scene numbering support as well as all the other features our XEM edition has to offer.

Please before using this with your existing database (sickbeard.db) please make a backup copy of it and delete any other database files such as cache.db and failed.db if present, we HIGHLY recommend starting out with no database files at all to make this a fresh start but the choice is at your own risk!

Enjoy!
2014-03-09 22:39:12 -07:00

211 lines
6.6 KiB
Python

from lib.hachoir_core.tools import humanDurationNanosec
from lib.hachoir_core.i18n import _
from math import floor
from time import time
class BenchmarkError(Exception):
"""
Error during benchmark, use str(err) to format it as string.
"""
def __init__(self, message):
Exception.__init__(self,
"Benchmark internal error: %s" % message)
class BenchmarkStat:
"""
Benchmark statistics. This class automatically computes minimum value,
maximum value and sum of all values.
Methods:
- append(value): append a value
- getMin(): minimum value
- getMax(): maximum value
- getSum(): sum of all values
- __len__(): get number of elements
- __nonzero__(): isn't empty?
"""
def __init__(self):
self._values = []
def append(self, value):
self._values.append(value)
try:
self._min = min(self._min, value)
self._max = max(self._max, value)
self._sum += value
except AttributeError:
self._min = value
self._max = value
self._sum = value
def __len__(self):
return len(self._values)
def __nonzero__(self):
return bool(self._values)
def getMin(self):
return self._min
def getMax(self):
return self._max
def getSum(self):
return self._sum
class Benchmark:
def __init__(self, max_time=5.0,
min_count=5, max_count=None, progress_time=1.0):
"""
Constructor:
- max_time: Maximum wanted duration of the whole benchmark
(default: 5 seconds, minimum: 1 second).
- min_count: Minimum number of function calls to get good statistics
(defaut: 5, minimum: 1).
- progress_time: Time between each "progress" message
(default: 1 second, minimum: 250 ms).
- max_count: Maximum number of function calls (default: no limit).
- verbose: Is verbose? (default: False)
- disable_gc: Disable garbage collector? (default: False)
"""
self.max_time = max(max_time, 1.0)
self.min_count = max(min_count, 1)
self.max_count = max_count
self.progress_time = max(progress_time, 0.25)
self.verbose = False
self.disable_gc = False
def formatTime(self, value):
"""
Format a time delta to string: use humanDurationNanosec()
"""
return humanDurationNanosec(value * 1000000000)
def displayStat(self, stat):
"""
Display statistics to stdout:
- best time (minimum)
- average time (arithmetic average)
- worst time (maximum)
- total time (sum)
Use arithmetic avertage instead of geometric average because
geometric fails if any value is zero (returns zero) and also
because floating point multiplication lose precision with many
values.
"""
average = stat.getSum() / len(stat)
values = (stat.getMin(), average, stat.getMax(), stat.getSum())
values = tuple(self.formatTime(value) for value in values)
print _("Benchmark: best=%s average=%s worst=%s total=%s") \
% values
def _runOnce(self, func, args, kw):
before = time()
func(*args, **kw)
after = time()
return after - before
def _run(self, func, args, kw):
"""
Call func(*args, **kw) as many times as needed to get
good statistics. Algorithm:
- call the function once
- compute needed number of calls
- and then call function N times
To compute number of calls, parameters are:
- time of first function call
- minimum number of calls (min_count attribute)
- maximum test time (max_time attribute)
Notice: The function will approximate number of calls.
"""
# First call of the benchmark
stat = BenchmarkStat()
diff = self._runOnce(func, args, kw)
best = diff
stat.append(diff)
total_time = diff
# Compute needed number of calls
count = int(floor(self.max_time / diff))
count = max(count, self.min_count)
if self.max_count:
count = min(count, self.max_count)
# Not other call? Just exit
if count == 1:
return stat
estimate = diff * count
if self.verbose:
print _("Run benchmark: %s calls (estimate: %s)") \
% (count, self.formatTime(estimate))
display_progress = self.verbose and (1.0 <= estimate)
total_count = 1
while total_count < count:
# Run benchmark and display each result
if display_progress:
print _("Result %s/%s: %s (best: %s)") % \
(total_count, count,
self.formatTime(diff), self.formatTime(best))
part = count - total_count
# Will takes more than one second?
average = total_time / total_count
if self.progress_time < part * average:
part = max( int(self.progress_time / average), 1)
for index in xrange(part):
diff = self._runOnce(func, args, kw)
stat.append(diff)
total_time += diff
best = min(diff, best)
total_count += part
if display_progress:
print _("Result %s/%s: %s (best: %s)") % \
(count, count,
self.formatTime(diff), self.formatTime(best))
return stat
def validateStat(self, stat):
"""
Check statistics and raise a BenchmarkError if they are invalid.
Example of tests: reject empty stat, reject stat with only nul values.
"""
if not stat:
raise BenchmarkError("empty statistics")
if not stat.getSum():
raise BenchmarkError("nul statistics")
def run(self, func, *args, **kw):
"""
Run function func(*args, **kw), validate statistics,
and display the result on stdout.
Disable garbage collector if asked too.
"""
# Disable garbarge collector is needed and if it does exist
# (Jython 2.2 don't have it for example)
if self.disable_gc:
try:
import gc
except ImportError:
self.disable_gc = False
if self.disable_gc:
gc_enabled = gc.isenabled()
gc.disable()
else:
gc_enabled = False
# Run the benchmark
stat = self._run(func, args, kw)
if gc_enabled:
gc.enable()
# Validate and display stats
self.validateStat(stat)
self.displayStat(stat)