1
0
mirror of https://github.com/moparisthebest/SickRage synced 2024-12-15 04:22:17 -05:00
SickRage/lib/tvdb_api/tests/gprof2dot.py

1639 lines
52 KiB
Python
Raw Normal View History

#!/usr/bin/env python2
#
# Copyright 2008 Jose Fonseca
#
# This program is free software: you can redistribute it and/or modify it
# under the terms of the GNU Lesser General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
"""Generate a dot graph from the output of several profilers."""
__author__ = "Jose Fonseca"
__version__ = "1.0"
import sys
import math
import os.path
import re
import textwrap
import optparse
try:
# Debugging helper module
import debug
except ImportError:
pass
def percentage(p):
return "%.02f%%" % (p*100.0,)
def add(a, b):
return a + b
def equal(a, b):
if a == b:
return a
else:
return None
def fail(a, b):
assert False
def ratio(numerator, denominator):
numerator = float(numerator)
denominator = float(denominator)
assert 0.0 <= numerator
assert numerator <= denominator
try:
return numerator/denominator
except ZeroDivisionError:
# 0/0 is undefined, but 1.0 yields more useful results
return 1.0
class UndefinedEvent(Exception):
"""Raised when attempting to get an event which is undefined."""
def __init__(self, event):
Exception.__init__(self)
self.event = event
def __str__(self):
return 'unspecified event %s' % self.event.name
class Event(object):
"""Describe a kind of event, and its basic operations."""
def __init__(self, name, null, aggregator, formatter = str):
self.name = name
self._null = null
self._aggregator = aggregator
self._formatter = formatter
def __eq__(self, other):
return self is other
def __hash__(self):
return id(self)
def null(self):
return self._null
def aggregate(self, val1, val2):
"""Aggregate two event values."""
assert val1 is not None
assert val2 is not None
return self._aggregator(val1, val2)
def format(self, val):
"""Format an event value."""
assert val is not None
return self._formatter(val)
MODULE = Event("Module", None, equal)
PROCESS = Event("Process", None, equal)
CALLS = Event("Calls", 0, add)
SAMPLES = Event("Samples", 0, add)
TIME = Event("Time", 0.0, add, lambda x: '(' + str(x) + ')')
TIME_RATIO = Event("Time ratio", 0.0, add, lambda x: '(' + percentage(x) + ')')
TOTAL_TIME = Event("Total time", 0.0, fail)
TOTAL_TIME_RATIO = Event("Total time ratio", 0.0, fail, percentage)
CALL_RATIO = Event("Call ratio", 0.0, add, percentage)
PRUNE_RATIO = Event("Prune ratio", 0.0, add, percentage)
class Object(object):
"""Base class for all objects in profile which can store events."""
def __init__(self, events=None):
if events is None:
self.events = {}
else:
self.events = events
def __hash__(self):
return id(self)
def __eq__(self, other):
return self is other
def __contains__(self, event):
return event in self.events
def __getitem__(self, event):
try:
return self.events[event]
except KeyError:
raise UndefinedEvent(event)
def __setitem__(self, event, value):
if value is None:
if event in self.events:
del self.events[event]
else:
self.events[event] = value
class Call(Object):
"""A call between functions.
There should be at most one call object for every pair of functions.
"""
def __init__(self, callee_id):
Object.__init__(self)
self.callee_id = callee_id
class Function(Object):
"""A function."""
def __init__(self, id, name):
Object.__init__(self)
self.id = id
self.name = name
self.calls = {}
self.cycle = None
def add_call(self, call):
if call.callee_id in self.calls:
sys.stderr.write('warning: overwriting call from function %s to %s\n' % (str(self.id), str(call.callee_id)))
self.calls[call.callee_id] = call
# TODO: write utility functions
def __repr__(self):
return self.name
class Cycle(Object):
"""A cycle made from recursive function calls."""
def __init__(self):
Object.__init__(self)
# XXX: Do cycles need an id?
self.functions = set()
def add_function(self, function):
assert function not in self.functions
self.functions.add(function)
# XXX: Aggregate events?
if function.cycle is not None:
for other in function.cycle.functions:
if function not in self.functions:
self.add_function(other)
function.cycle = self
class Profile(Object):
"""The whole profile."""
def __init__(self):
Object.__init__(self)
self.functions = {}
self.cycles = []
def add_function(self, function):
if function.id in self.functions:
sys.stderr.write('warning: overwriting function %s (id %s)\n' % (function.name, str(function.id)))
self.functions[function.id] = function
def add_cycle(self, cycle):
self.cycles.append(cycle)
def validate(self):
"""Validate the edges."""
for function in self.functions.itervalues():
for callee_id in function.calls.keys():
assert function.calls[callee_id].callee_id == callee_id
if callee_id not in self.functions:
sys.stderr.write('warning: call to undefined function %s from function %s\n' % (str(callee_id), function.name))
del function.calls[callee_id]
def find_cycles(self):
"""Find cycles using Tarjan's strongly connected components algorithm."""
# Apply the Tarjan's algorithm successively until all functions are visited
visited = set()
for function in self.functions.itervalues():
if function not in visited:
self._tarjan(function, 0, [], {}, {}, visited)
cycles = []
for function in self.functions.itervalues():
if function.cycle is not None and function.cycle not in cycles:
cycles.append(function.cycle)
self.cycles = cycles
if 0:
for cycle in cycles:
sys.stderr.write("Cycle:\n")
for member in cycle.functions:
sys.stderr.write("\t%s\n" % member.name)
def _tarjan(self, function, order, stack, orders, lowlinks, visited):
"""Tarjan's strongly connected components algorithm.
See also:
- http://en.wikipedia.org/wiki/Tarjan's_strongly_connected_components_algorithm
"""
visited.add(function)
orders[function] = order
lowlinks[function] = order
order += 1
pos = len(stack)
stack.append(function)
for call in function.calls.itervalues():
callee = self.functions[call.callee_id]
# TODO: use a set to optimize lookup
if callee not in orders:
order = self._tarjan(callee, order, stack, orders, lowlinks, visited)
lowlinks[function] = min(lowlinks[function], lowlinks[callee])
elif callee in stack:
lowlinks[function] = min(lowlinks[function], orders[callee])
if lowlinks[function] == orders[function]:
# Strongly connected component found
members = stack[pos:]
del stack[pos:]
if len(members) > 1:
cycle = Cycle()
for member in members:
cycle.add_function(member)
return order
def call_ratios(self, event):
# Aggregate for incoming calls
cycle_totals = {}
for cycle in self.cycles:
cycle_totals[cycle] = 0.0
function_totals = {}
for function in self.functions.itervalues():
function_totals[function] = 0.0
for function in self.functions.itervalues():
for call in function.calls.itervalues():
if call.callee_id != function.id:
callee = self.functions[call.callee_id]
function_totals[callee] += call[event]
if callee.cycle is not None and callee.cycle is not function.cycle:
cycle_totals[callee.cycle] += call[event]
# Compute the ratios
for function in self.functions.itervalues():
for call in function.calls.itervalues():
assert CALL_RATIO not in call
if call.callee_id != function.id:
callee = self.functions[call.callee_id]
if callee.cycle is not None and callee.cycle is not function.cycle:
total = cycle_totals[callee.cycle]
else:
total = function_totals[callee]
call[CALL_RATIO] = ratio(call[event], total)
def integrate(self, outevent, inevent):
"""Propagate function time ratio allong the function calls.
Must be called after finding the cycles.
See also:
- http://citeseer.ist.psu.edu/graham82gprof.html
"""
# Sanity checking
assert outevent not in self
for function in self.functions.itervalues():
assert outevent not in function
assert inevent in function
for call in function.calls.itervalues():
assert outevent not in call
if call.callee_id != function.id:
assert CALL_RATIO in call
# Aggregate the input for each cycle
for cycle in self.cycles:
total = inevent.null()
for function in self.functions.itervalues():
total = inevent.aggregate(total, function[inevent])
self[inevent] = total
# Integrate along the edges
total = inevent.null()
for function in self.functions.itervalues():
total = inevent.aggregate(total, function[inevent])
self._integrate_function(function, outevent, inevent)
self[outevent] = total
def _integrate_function(self, function, outevent, inevent):
if function.cycle is not None:
return self._integrate_cycle(function.cycle, outevent, inevent)
else:
if outevent not in function:
total = function[inevent]
for call in function.calls.itervalues():
if call.callee_id != function.id:
total += self._integrate_call(call, outevent, inevent)
function[outevent] = total
return function[outevent]
def _integrate_call(self, call, outevent, inevent):
assert outevent not in call
assert CALL_RATIO in call
callee = self.functions[call.callee_id]
subtotal = call[CALL_RATIO]*self._integrate_function(callee, outevent, inevent)
call[outevent] = subtotal
return subtotal
def _integrate_cycle(self, cycle, outevent, inevent):
if outevent not in cycle:
total = inevent.null()
for member in cycle.functions:
subtotal = member[inevent]
for call in member.calls.itervalues():
callee = self.functions[call.callee_id]
if callee.cycle is not cycle:
subtotal += self._integrate_call(call, outevent, inevent)
total += subtotal
cycle[outevent] = total
callees = {}
for function in self.functions.itervalues():
if function.cycle is not cycle:
for call in function.calls.itervalues():
callee = self.functions[call.callee_id]
if callee.cycle is cycle:
try:
callees[callee] += call[CALL_RATIO]
except KeyError:
callees[callee] = call[CALL_RATIO]
for callee, call_ratio in callees.iteritems():
ranks = {}
call_ratios = {}
partials = {}
self._rank_cycle_function(cycle, callee, 0, ranks)
self._call_ratios_cycle(cycle, callee, ranks, call_ratios, set())
partial = self._integrate_cycle_function(cycle, callee, call_ratio, partials, ranks, call_ratios, outevent, inevent)
assert partial == max(partials.values())
assert not total or abs(1.0 - partial/(call_ratio*total)) <= 0.001
return cycle[outevent]
def _rank_cycle_function(self, cycle, function, rank, ranks):
if function not in ranks or ranks[function] > rank:
ranks[function] = rank
for call in function.calls.itervalues():
if call.callee_id != function.id:
callee = self.functions[call.callee_id]
if callee.cycle is cycle:
self._rank_cycle_function(cycle, callee, rank + 1, ranks)
def _call_ratios_cycle(self, cycle, function, ranks, call_ratios, visited):
if function not in visited:
visited.add(function)
for call in function.calls.itervalues():
if call.callee_id != function.id:
callee = self.functions[call.callee_id]
if callee.cycle is cycle:
if ranks[callee] > ranks[function]:
call_ratios[callee] = call_ratios.get(callee, 0.0) + call[CALL_RATIO]
self._call_ratios_cycle(cycle, callee, ranks, call_ratios, visited)
def _integrate_cycle_function(self, cycle, function, partial_ratio, partials, ranks, call_ratios, outevent, inevent):
if function not in partials:
partial = partial_ratio*function[inevent]
for call in function.calls.itervalues():
if call.callee_id != function.id:
callee = self.functions[call.callee_id]
if callee.cycle is not cycle:
assert outevent in call
partial += partial_ratio*call[outevent]
else:
if ranks[callee] > ranks[function]:
callee_partial = self._integrate_cycle_function(cycle, callee, partial_ratio, partials, ranks, call_ratios, outevent, inevent)
call_ratio = ratio(call[CALL_RATIO], call_ratios[callee])
call_partial = call_ratio*callee_partial
try:
call[outevent] += call_partial
except UndefinedEvent:
call[outevent] = call_partial
partial += call_partial
partials[function] = partial
try:
function[outevent] += partial
except UndefinedEvent:
function[outevent] = partial
return partials[function]
def aggregate(self, event):
"""Aggregate an event for the whole profile."""
total = event.null()
for function in self.functions.itervalues():
try:
total = event.aggregate(total, function[event])
except UndefinedEvent:
return
self[event] = total
def ratio(self, outevent, inevent):
assert outevent not in self
assert inevent in self
for function in self.functions.itervalues():
assert outevent not in function
assert inevent in function
function[outevent] = ratio(function[inevent], self[inevent])
for call in function.calls.itervalues():
assert outevent not in call
if inevent in call:
call[outevent] = ratio(call[inevent], self[inevent])
self[outevent] = 1.0
def prune(self, node_thres, edge_thres):
"""Prune the profile"""
# compute the prune ratios
for function in self.functions.itervalues():
try:
function[PRUNE_RATIO] = function[TOTAL_TIME_RATIO]
except UndefinedEvent:
pass
for call in function.calls.itervalues():
callee = self.functions[call.callee_id]
if TOTAL_TIME_RATIO in call:
# handle exact cases first
call[PRUNE_RATIO] = call[TOTAL_TIME_RATIO]
else:
try:
# make a safe estimate
call[PRUNE_RATIO] = min(function[TOTAL_TIME_RATIO], callee[TOTAL_TIME_RATIO])
except UndefinedEvent:
pass
# prune the nodes
for function_id in self.functions.keys():
function = self.functions[function_id]
try:
if function[PRUNE_RATIO] < node_thres:
del self.functions[function_id]
except UndefinedEvent:
pass
# prune the egdes
for function in self.functions.itervalues():
for callee_id in function.calls.keys():
call = function.calls[callee_id]
try:
if callee_id not in self.functions or call[PRUNE_RATIO] < edge_thres:
del function.calls[callee_id]
except UndefinedEvent:
pass
def dump(self):
for function in self.functions.itervalues():
sys.stderr.write('Function %s:\n' % (function.name,))
self._dump_events(function.events)
for call in function.calls.itervalues():
callee = self.functions[call.callee_id]
sys.stderr.write(' Call %s:\n' % (callee.name,))
self._dump_events(call.events)
def _dump_events(self, events):
for event, value in events.iteritems():
sys.stderr.write(' %s: %s\n' % (event.name, event.format(value)))
class Struct:
"""Masquerade a dictionary with a structure-like behavior."""
def __init__(self, attrs = None):
if attrs is None:
attrs = {}
self.__dict__['_attrs'] = attrs
def __getattr__(self, name):
try:
return self._attrs[name]
except KeyError:
raise AttributeError(name)
def __setattr__(self, name, value):
self._attrs[name] = value
def __str__(self):
return str(self._attrs)
def __repr__(self):
return repr(self._attrs)
class ParseError(Exception):
"""Raised when parsing to signal mismatches."""
def __init__(self, msg, line):
self.msg = msg
# TODO: store more source line information
self.line = line
def __str__(self):
return '%s: %r' % (self.msg, self.line)
class Parser:
"""Parser interface."""
def __init__(self):
pass
def parse(self):
raise NotImplementedError
class LineParser(Parser):
"""Base class for parsers that read line-based formats."""
def __init__(self, file):
Parser.__init__(self)
self._file = file
self.__line = None
self.__eof = False
def readline(self):
line = self._file.readline()
if not line:
self.__line = ''
self.__eof = True
self.__line = line.rstrip('\r\n')
def lookahead(self):
assert self.__line is not None
return self.__line
def consume(self):
assert self.__line is not None
line = self.__line
self.readline()
return line
def eof(self):
assert self.__line is not None
return self.__eof
class GprofParser(Parser):
"""Parser for GNU gprof output.
See also:
- Chapter "Interpreting gprof's Output" from the GNU gprof manual
http://sourceware.org/binutils/docs-2.18/gprof/Call-Graph.html#Call-Graph
- File "cg_print.c" from the GNU gprof source code
http://sourceware.org/cgi-bin/cvsweb.cgi/~checkout~/src/gprof/cg_print.c?rev=1.12&cvsroot=src
"""
def __init__(self, fp):
Parser.__init__(self)
self.fp = fp
self.functions = {}
self.cycles = {}
def readline(self):
line = self.fp.readline()
if not line:
sys.stderr.write('error: unexpected end of file\n')
sys.exit(1)
line = line.rstrip('\r\n')
return line
_int_re = re.compile(r'^\d+$')
_float_re = re.compile(r'^\d+\.\d+$')
def translate(self, mo):
"""Extract a structure from a match object, while translating the types in the process."""
attrs = {}
groupdict = mo.groupdict()
for name, value in groupdict.iteritems():
if value is None:
value = None
elif self._int_re.match(value):
value = int(value)
elif self._float_re.match(value):
value = float(value)
attrs[name] = (value)
return Struct(attrs)
_cg_header_re = re.compile(
# original gprof header
r'^\s+called/total\s+parents\s*$|' +
r'^index\s+%time\s+self\s+descendents\s+called\+self\s+name\s+index\s*$|' +
r'^\s+called/total\s+children\s*$|' +
# GNU gprof header
r'^index\s+%\s+time\s+self\s+children\s+called\s+name\s*$'
)
_cg_ignore_re = re.compile(
# spontaneous
r'^\s+<spontaneous>\s*$|'
# internal calls (such as "mcount")
r'^.*\((\d+)\)$'
)
_cg_primary_re = re.compile(
r'^\[(?P<index>\d+)\]' +
r'\s+(?P<percentage_time>\d+\.\d+)' +
r'\s+(?P<self>\d+\.\d+)' +
r'\s+(?P<descendants>\d+\.\d+)' +
r'\s+(?:(?P<called>\d+)(?:\+(?P<called_self>\d+))?)?' +
r'\s+(?P<name>\S.*?)' +
r'(?:\s+<cycle\s(?P<cycle>\d+)>)?' +
r'\s\[(\d+)\]$'
)
_cg_parent_re = re.compile(
r'^\s+(?P<self>\d+\.\d+)?' +
r'\s+(?P<descendants>\d+\.\d+)?' +
r'\s+(?P<called>\d+)(?:/(?P<called_total>\d+))?' +
r'\s+(?P<name>\S.*?)' +
r'(?:\s+<cycle\s(?P<cycle>\d+)>)?' +
r'\s\[(?P<index>\d+)\]$'
)
_cg_child_re = _cg_parent_re
_cg_cycle_header_re = re.compile(
r'^\[(?P<index>\d+)\]' +
r'\s+(?P<percentage_time>\d+\.\d+)' +
r'\s+(?P<self>\d+\.\d+)' +
r'\s+(?P<descendants>\d+\.\d+)' +
r'\s+(?:(?P<called>\d+)(?:\+(?P<called_self>\d+))?)?' +
r'\s+<cycle\s(?P<cycle>\d+)\sas\sa\swhole>' +
r'\s\[(\d+)\]$'
)
_cg_cycle_member_re = re.compile(
r'^\s+(?P<self>\d+\.\d+)?' +
r'\s+(?P<descendants>\d+\.\d+)?' +
r'\s+(?P<called>\d+)(?:\+(?P<called_self>\d+))?' +
r'\s+(?P<name>\S.*?)' +
r'(?:\s+<cycle\s(?P<cycle>\d+)>)?' +
r'\s\[(?P<index>\d+)\]$'
)
_cg_sep_re = re.compile(r'^--+$')
def parse_function_entry(self, lines):
parents = []
children = []
while True:
if not lines:
sys.stderr.write('warning: unexpected end of entry\n')
line = lines.pop(0)
if line.startswith('['):
break
# read function parent line
mo = self._cg_parent_re.match(line)
if not mo:
if self._cg_ignore_re.match(line):
continue
sys.stderr.write('warning: unrecognized call graph entry: %r\n' % line)
else:
parent = self.translate(mo)
parents.append(parent)
# read primary line
mo = self._cg_primary_re.match(line)
if not mo:
sys.stderr.write('warning: unrecognized call graph entry: %r\n' % line)
return
else:
function = self.translate(mo)
while lines:
line = lines.pop(0)
# read function subroutine line
mo = self._cg_child_re.match(line)
if not mo:
if self._cg_ignore_re.match(line):
continue
sys.stderr.write('warning: unrecognized call graph entry: %r\n' % line)
else:
child = self.translate(mo)
children.append(child)
function.parents = parents
function.children = children
self.functions[function.index] = function
def parse_cycle_entry(self, lines):
# read cycle header line
line = lines[0]
mo = self._cg_cycle_header_re.match(line)
if not mo:
sys.stderr.write('warning: unrecognized call graph entry: %r\n' % line)
return
cycle = self.translate(mo)
# read cycle member lines
cycle.functions = []
for line in lines[1:]:
mo = self._cg_cycle_member_re.match(line)
if not mo:
sys.stderr.write('warning: unrecognized call graph entry: %r\n' % line)
continue
call = self.translate(mo)
cycle.functions.append(call)
self.cycles[cycle.cycle] = cycle
def parse_cg_entry(self, lines):
if lines[0].startswith("["):
self.parse_cycle_entry(lines)
else:
self.parse_function_entry(lines)
def parse_cg(self):
"""Parse the call graph."""
# skip call graph header
while not self._cg_header_re.match(self.readline()):
pass
line = self.readline()
while self._cg_header_re.match(line):
line = self.readline()
# process call graph entries
entry_lines = []
while line != '\014': # form feed
if line and not line.isspace():
if self._cg_sep_re.match(line):
self.parse_cg_entry(entry_lines)
entry_lines = []
else:
entry_lines.append(line)
line = self.readline()
def parse(self):
self.parse_cg()
self.fp.close()
profile = Profile()
profile[TIME] = 0.0
cycles = {}
for index in self.cycles.iterkeys():
cycles[index] = Cycle()
for entry in self.functions.itervalues():
# populate the function
function = Function(entry.index, entry.name)
function[TIME] = entry.self
if entry.called is not None:
function[CALLS] = entry.called
if entry.called_self is not None:
call = Call(entry.index)
call[CALLS] = entry.called_self
function[CALLS] += entry.called_self
# populate the function calls
for child in entry.children:
call = Call(child.index)
assert child.called is not None
call[CALLS] = child.called
if child.index not in self.functions:
# NOTE: functions that were never called but were discovered by gprof's
# static call graph analysis dont have a call graph entry so we need
# to add them here
missing = Function(child.index, child.name)
function[TIME] = 0.0
function[CALLS] = 0
profile.add_function(missing)
function.add_call(call)
profile.add_function(function)
if entry.cycle is not None:
cycles[entry.cycle].add_function(function)
profile[TIME] = profile[TIME] + function[TIME]
for cycle in cycles.itervalues():
profile.add_cycle(cycle)
# Compute derived events
profile.validate()
profile.ratio(TIME_RATIO, TIME)
profile.call_ratios(CALLS)
profile.integrate(TOTAL_TIME, TIME)
profile.ratio(TOTAL_TIME_RATIO, TOTAL_TIME)
return profile
class OprofileParser(LineParser):
"""Parser for oprofile callgraph output.
See also:
- http://oprofile.sourceforge.net/doc/opreport.html#opreport-callgraph
"""
_fields_re = {
'samples': r'(?P<samples>\d+)',
'%': r'(?P<percentage>\S+)',
'linenr info': r'(?P<source>\(no location information\)|\S+:\d+)',
'image name': r'(?P<image>\S+(?:\s\(tgid:[^)]*\))?)',
'app name': r'(?P<application>\S+)',
'symbol name': r'(?P<symbol>\(no symbols\)|.+?)',
}
def __init__(self, infile):
LineParser.__init__(self, infile)
self.entries = {}
self.entry_re = None
def add_entry(self, callers, function, callees):
try:
entry = self.entries[function.id]
except KeyError:
self.entries[function.id] = (callers, function, callees)
else:
callers_total, function_total, callees_total = entry
self.update_subentries_dict(callers_total, callers)
function_total.samples += function.samples
self.update_subentries_dict(callees_total, callees)
def update_subentries_dict(self, totals, partials):
for partial in partials.itervalues():
try:
total = totals[partial.id]
except KeyError:
totals[partial.id] = partial
else:
total.samples += partial.samples
def parse(self):
# read lookahead
self.readline()
self.parse_header()
while self.lookahead():
self.parse_entry()
profile = Profile()
reverse_call_samples = {}
# populate the profile
profile[SAMPLES] = 0
for _callers, _function, _callees in self.entries.itervalues():
function = Function(_function.id, _function.name)
function[SAMPLES] = _function.samples
profile.add_function(function)
profile[SAMPLES] += _function.samples
if _function.application:
function[PROCESS] = os.path.basename(_function.application)
if _function.image:
function[MODULE] = os.path.basename(_function.image)
total_callee_samples = 0
for _callee in _callees.itervalues():
total_callee_samples += _callee.samples
for _callee in _callees.itervalues():
if not _callee.self:
call = Call(_callee.id)
call[SAMPLES] = _callee.samples
function.add_call(call)
# compute derived data
profile.validate()
profile.find_cycles()
profile.ratio(TIME_RATIO, SAMPLES)
profile.call_ratios(SAMPLES)
profile.integrate(TOTAL_TIME_RATIO, TIME_RATIO)
return profile
def parse_header(self):
while not self.match_header():
self.consume()
line = self.lookahead()
fields = re.split(r'\s\s+', line)
entry_re = r'^\s*' + r'\s+'.join([self._fields_re[field] for field in fields]) + r'(?P<self>\s+\[self\])?$'
self.entry_re = re.compile(entry_re)
self.skip_separator()
def parse_entry(self):
callers = self.parse_subentries()
if self.match_primary():
function = self.parse_subentry()
if function is not None:
callees = self.parse_subentries()
self.add_entry(callers, function, callees)
self.skip_separator()
def parse_subentries(self):
subentries = {}
while self.match_secondary():
subentry = self.parse_subentry()
subentries[subentry.id] = subentry
return subentries
def parse_subentry(self):
entry = Struct()
line = self.consume()
mo = self.entry_re.match(line)
if not mo:
raise ParseError('failed to parse', line)
fields = mo.groupdict()
entry.samples = int(fields.get('samples', 0))
entry.percentage = float(fields.get('percentage', 0.0))
if 'source' in fields and fields['source'] != '(no location information)':
source = fields['source']
filename, lineno = source.split(':')
entry.filename = filename
entry.lineno = int(lineno)
else:
source = ''
entry.filename = None
entry.lineno = None
entry.image = fields.get('image', '')
entry.application = fields.get('application', '')
if 'symbol' in fields and fields['symbol'] != '(no symbols)':
entry.symbol = fields['symbol']
else:
entry.symbol = ''
if entry.symbol.startswith('"') and entry.symbol.endswith('"'):
entry.symbol = entry.symbol[1:-1]
entry.id = ':'.join((entry.application, entry.image, source, entry.symbol))
entry.self = fields.get('self', None) != None
if entry.self:
entry.id += ':self'
if entry.symbol:
entry.name = entry.symbol
else:
entry.name = entry.image
return entry
def skip_separator(self):
while not self.match_separator():
self.consume()
self.consume()
def match_header(self):
line = self.lookahead()
return line.startswith('samples')
def match_separator(self):
line = self.lookahead()
return line == '-'*len(line)
def match_primary(self):
line = self.lookahead()
return not line[:1].isspace()
def match_secondary(self):
line = self.lookahead()
return line[:1].isspace()
class SharkParser(LineParser):
"""Parser for MacOSX Shark output.
Author: tom@dbservice.com
"""
def __init__(self, infile):
LineParser.__init__(self, infile)
self.stack = []
self.entries = {}
def add_entry(self, function):
try:
entry = self.entries[function.id]
except KeyError:
self.entries[function.id] = (function, { })
else:
function_total, callees_total = entry
function_total.samples += function.samples
def add_callee(self, function, callee):
func, callees = self.entries[function.id]
try:
entry = callees[callee.id]
except KeyError:
callees[callee.id] = callee
else:
entry.samples += callee.samples
def parse(self):
self.readline()
self.readline()
self.readline()
self.readline()
match = re.compile(r'(?P<prefix>[|+ ]*)(?P<samples>\d+), (?P<symbol>[^,]+), (?P<image>.*)')
while self.lookahead():
line = self.consume()
mo = match.match(line)
if not mo:
raise ParseError('failed to parse', line)
fields = mo.groupdict()
prefix = len(fields.get('prefix', 0)) / 2 - 1
symbol = str(fields.get('symbol', 0))
image = str(fields.get('image', 0))
entry = Struct()
entry.id = ':'.join([symbol, image])
entry.samples = int(fields.get('samples', 0))
entry.name = symbol
entry.image = image
# adjust the callstack
if prefix < len(self.stack):
del self.stack[prefix:]
if prefix == len(self.stack):
self.stack.append(entry)
# if the callstack has had an entry, it's this functions caller
if prefix > 0:
self.add_callee(self.stack[prefix - 1], entry)
self.add_entry(entry)
profile = Profile()
profile[SAMPLES] = 0
for _function, _callees in self.entries.itervalues():
function = Function(_function.id, _function.name)
function[SAMPLES] = _function.samples
profile.add_function(function)
profile[SAMPLES] += _function.samples
if _function.image:
function[MODULE] = os.path.basename(_function.image)
for _callee in _callees.itervalues():
call = Call(_callee.id)
call[SAMPLES] = _callee.samples
function.add_call(call)
# compute derived data
profile.validate()
profile.find_cycles()
profile.ratio(TIME_RATIO, SAMPLES)
profile.call_ratios(SAMPLES)
profile.integrate(TOTAL_TIME_RATIO, TIME_RATIO)
return profile
class PstatsParser:
"""Parser python profiling statistics saved with te pstats module."""
def __init__(self, *filename):
import pstats
self.stats = pstats.Stats(*filename)
self.profile = Profile()
self.function_ids = {}
def get_function_name(self, (filename, line, name)):
module = os.path.splitext(filename)[0]
module = os.path.basename(module)
return "%s:%d:%s" % (module, line, name)
def get_function(self, key):
try:
id = self.function_ids[key]
except KeyError:
id = len(self.function_ids)
name = self.get_function_name(key)
function = Function(id, name)
self.profile.functions[id] = function
self.function_ids[key] = id
else:
function = self.profile.functions[id]
return function
def parse(self):
self.profile[TIME] = 0.0
self.profile[TOTAL_TIME] = self.stats.total_tt
for fn, (cc, nc, tt, ct, callers) in self.stats.stats.iteritems():
callee = self.get_function(fn)
callee[CALLS] = nc
callee[TOTAL_TIME] = ct
callee[TIME] = tt
self.profile[TIME] += tt
self.profile[TOTAL_TIME] = max(self.profile[TOTAL_TIME], ct)
for fn, value in callers.iteritems():
caller = self.get_function(fn)
call = Call(callee.id)
if isinstance(value, tuple):
for i in xrange(0, len(value), 4):
nc, cc, tt, ct = value[i:i+4]
if CALLS in call:
call[CALLS] += cc
else:
call[CALLS] = cc
if TOTAL_TIME in call:
call[TOTAL_TIME] += ct
else:
call[TOTAL_TIME] = ct
else:
call[CALLS] = value
call[TOTAL_TIME] = ratio(value, nc)*ct
caller.add_call(call)
#self.stats.print_stats()
#self.stats.print_callees()
# Compute derived events
self.profile.validate()
self.profile.ratio(TIME_RATIO, TIME)
self.profile.ratio(TOTAL_TIME_RATIO, TOTAL_TIME)
return self.profile
class Theme:
def __init__(self,
bgcolor = (0.0, 0.0, 1.0),
mincolor = (0.0, 0.0, 0.0),
maxcolor = (0.0, 0.0, 1.0),
fontname = "Arial",
minfontsize = 10.0,
maxfontsize = 10.0,
minpenwidth = 0.5,
maxpenwidth = 4.0,
gamma = 2.2):
self.bgcolor = bgcolor
self.mincolor = mincolor
self.maxcolor = maxcolor
self.fontname = fontname
self.minfontsize = minfontsize
self.maxfontsize = maxfontsize
self.minpenwidth = minpenwidth
self.maxpenwidth = maxpenwidth
self.gamma = gamma
def graph_bgcolor(self):
return self.hsl_to_rgb(*self.bgcolor)
def graph_fontname(self):
return self.fontname
def graph_fontsize(self):
return self.minfontsize
def node_bgcolor(self, weight):
return self.color(weight)
def node_fgcolor(self, weight):
return self.graph_bgcolor()
def node_fontsize(self, weight):
return self.fontsize(weight)
def edge_color(self, weight):
return self.color(weight)
def edge_fontsize(self, weight):
return self.fontsize(weight)
def edge_penwidth(self, weight):
return max(weight*self.maxpenwidth, self.minpenwidth)
def edge_arrowsize(self, weight):
return 0.5 * math.sqrt(self.edge_penwidth(weight))
def fontsize(self, weight):
return max(weight**2 * self.maxfontsize, self.minfontsize)
def color(self, weight):
weight = min(max(weight, 0.0), 1.0)
hmin, smin, lmin = self.mincolor
hmax, smax, lmax = self.maxcolor
h = hmin + weight*(hmax - hmin)
s = smin + weight*(smax - smin)
l = lmin + weight*(lmax - lmin)
return self.hsl_to_rgb(h, s, l)
def hsl_to_rgb(self, h, s, l):
"""Convert a color from HSL color-model to RGB.
See also:
- http://www.w3.org/TR/css3-color/#hsl-color
"""
h = h % 1.0
s = min(max(s, 0.0), 1.0)
l = min(max(l, 0.0), 1.0)
if l <= 0.5:
m2 = l*(s + 1.0)
else:
m2 = l + s - l*s
m1 = l*2.0 - m2
r = self._hue_to_rgb(m1, m2, h + 1.0/3.0)
g = self._hue_to_rgb(m1, m2, h)
b = self._hue_to_rgb(m1, m2, h - 1.0/3.0)
# Apply gamma correction
r **= self.gamma
g **= self.gamma
b **= self.gamma
return (r, g, b)
def _hue_to_rgb(self, m1, m2, h):
if h < 0.0:
h += 1.0
elif h > 1.0:
h -= 1.0
if h*6 < 1.0:
return m1 + (m2 - m1)*h*6.0
elif h*2 < 1.0:
return m2
elif h*3 < 2.0:
return m1 + (m2 - m1)*(2.0/3.0 - h)*6.0
else:
return m1
TEMPERATURE_COLORMAP = Theme(
mincolor = (2.0/3.0, 0.80, 0.25), # dark blue
maxcolor = (0.0, 1.0, 0.5), # satured red
gamma = 1.0
)
PINK_COLORMAP = Theme(
mincolor = (0.0, 1.0, 0.90), # pink
maxcolor = (0.0, 1.0, 0.5), # satured red
)
GRAY_COLORMAP = Theme(
mincolor = (0.0, 0.0, 0.85), # light gray
maxcolor = (0.0, 0.0, 0.0), # black
)
BW_COLORMAP = Theme(
minfontsize = 8.0,
maxfontsize = 24.0,
mincolor = (0.0, 0.0, 0.0), # black
maxcolor = (0.0, 0.0, 0.0), # black
minpenwidth = 0.1,
maxpenwidth = 8.0,
)
class DotWriter:
"""Writer for the DOT language.
See also:
- "The DOT Language" specification
http://www.graphviz.org/doc/info/lang.html
"""
def __init__(self, fp):
self.fp = fp
def graph(self, profile, theme):
self.begin_graph()
fontname = theme.graph_fontname()
self.attr('graph', fontname=fontname, ranksep=0.25, nodesep=0.125)
self.attr('node', fontname=fontname, shape="box", style="filled,rounded", fontcolor="white", width=0, height=0)
self.attr('edge', fontname=fontname)
for function in profile.functions.itervalues():
labels = []
for event in PROCESS, MODULE:
if event in function.events:
label = event.format(function[event])
labels.append(label)
labels.append(function.name)
for event in TOTAL_TIME_RATIO, TIME_RATIO, CALLS:
if event in function.events:
label = event.format(function[event])
labels.append(label)
try:
weight = function[PRUNE_RATIO]
except UndefinedEvent:
weight = 0.0
label = '\n'.join(labels)
self.node(function.id,
label = label,
color = self.color(theme.node_bgcolor(weight)),
fontcolor = self.color(theme.node_fgcolor(weight)),
fontsize = "%.2f" % theme.node_fontsize(weight),
)
for call in function.calls.itervalues():
callee = profile.functions[call.callee_id]
labels = []
for event in TOTAL_TIME_RATIO, CALLS:
if event in call.events:
label = event.format(call[event])
labels.append(label)
try:
weight = call[PRUNE_RATIO]
except UndefinedEvent:
try:
weight = callee[PRUNE_RATIO]
except UndefinedEvent:
weight = 0.0
label = '\n'.join(labels)
self.edge(function.id, call.callee_id,
label = label,
color = self.color(theme.edge_color(weight)),
fontcolor = self.color(theme.edge_color(weight)),
fontsize = "%.2f" % theme.edge_fontsize(weight),
penwidth = "%.2f" % theme.edge_penwidth(weight),
labeldistance = "%.2f" % theme.edge_penwidth(weight),
arrowsize = "%.2f" % theme.edge_arrowsize(weight),
)
self.end_graph()
def begin_graph(self):
self.write('digraph {\n')
def end_graph(self):
self.write('}\n')
def attr(self, what, **attrs):
self.write("\t")
self.write(what)
self.attr_list(attrs)
self.write(";\n")
def node(self, node, **attrs):
self.write("\t")
self.id(node)
self.attr_list(attrs)
self.write(";\n")
def edge(self, src, dst, **attrs):
self.write("\t")
self.id(src)
self.write(" -> ")
self.id(dst)
self.attr_list(attrs)
self.write(";\n")
def attr_list(self, attrs):
if not attrs:
return
self.write(' [')
first = True
for name, value in attrs.iteritems():
if first:
first = False
else:
self.write(", ")
self.id(name)
self.write('=')
self.id(value)
self.write(']')
def id(self, id):
if isinstance(id, (int, float)):
s = str(id)
elif isinstance(id, str):
if id.isalnum():
s = id
else:
s = self.escape(id)
else:
raise TypeError
self.write(s)
def color(self, (r, g, b)):
def float2int(f):
if f <= 0.0:
return 0
if f >= 1.0:
return 255
return int(255.0*f + 0.5)
return "#" + "".join(["%02x" % float2int(c) for c in (r, g, b)])
def escape(self, s):
s = s.encode('utf-8')
s = s.replace('\\', r'\\')
s = s.replace('\n', r'\n')
s = s.replace('\t', r'\t')
s = s.replace('"', r'\"')
return '"' + s + '"'
def write(self, s):
self.fp.write(s)
class Main:
"""Main program."""
themes = {
"color": TEMPERATURE_COLORMAP,
"pink": PINK_COLORMAP,
"gray": GRAY_COLORMAP,
"bw": BW_COLORMAP,
}
def main(self):
"""Main program."""
parser = optparse.OptionParser(
usage="\n\t%prog [options] [file] ...",
version="%%prog %s" % __version__)
parser.add_option(
'-o', '--output', metavar='FILE',
type="string", dest="output",
help="output filename [stdout]")
parser.add_option(
'-n', '--node-thres', metavar='PERCENTAGE',
type="float", dest="node_thres", default=0.5,
help="eliminate nodes below this threshold [default: %default]")
parser.add_option(
'-e', '--edge-thres', metavar='PERCENTAGE',
type="float", dest="edge_thres", default=0.1,
help="eliminate edges below this threshold [default: %default]")
parser.add_option(
'-f', '--format',
type="choice", choices=('prof', 'oprofile', 'pstats', 'shark'),
dest="format", default="prof",
help="profile format: prof, oprofile, or pstats [default: %default]")
parser.add_option(
'-c', '--colormap',
type="choice", choices=('color', 'pink', 'gray', 'bw'),
dest="theme", default="color",
help="color map: color, pink, gray, or bw [default: %default]")
parser.add_option(
'-s', '--strip',
action="store_true",
dest="strip", default=False,
help="strip function parameters, template parameters, and const modifiers from demangled C++ function names")
parser.add_option(
'-w', '--wrap',
action="store_true",
dest="wrap", default=False,
help="wrap function names")
(self.options, self.args) = parser.parse_args(sys.argv[1:])
if len(self.args) > 1 and self.options.format != 'pstats':
parser.error('incorrect number of arguments')
try:
self.theme = self.themes[self.options.theme]
except KeyError:
parser.error('invalid colormap \'%s\'' % self.options.theme)
if self.options.format == 'prof':
if not self.args:
fp = sys.stdin
else:
fp = open(self.args[0], 'rt')
parser = GprofParser(fp)
elif self.options.format == 'oprofile':
if not self.args:
fp = sys.stdin
else:
fp = open(self.args[0], 'rt')
parser = OprofileParser(fp)
elif self.options.format == 'pstats':
if not self.args:
parser.error('at least a file must be specified for pstats input')
parser = PstatsParser(*self.args)
elif self.options.format == 'shark':
if not self.args:
fp = sys.stdin
else:
fp = open(self.args[0], 'rt')
parser = SharkParser(fp)
else:
parser.error('invalid format \'%s\'' % self.options.format)
self.profile = parser.parse()
if self.options.output is None:
self.output = sys.stdout
else:
self.output = open(self.options.output, 'wt')
self.write_graph()
_parenthesis_re = re.compile(r'\([^()]*\)')
_angles_re = re.compile(r'<[^<>]*>')
_const_re = re.compile(r'\s+const$')
def strip_function_name(self, name):
"""Remove extraneous information from C++ demangled function names."""
# Strip function parameters from name by recursively removing paired parenthesis
while True:
name, n = self._parenthesis_re.subn('', name)
if not n:
break
# Strip const qualifier
name = self._const_re.sub('', name)
# Strip template parameters from name by recursively removing paired angles
while True:
name, n = self._angles_re.subn('', name)
if not n:
break
return name
def wrap_function_name(self, name):
"""Split the function name on multiple lines."""
if len(name) > 32:
ratio = 2.0/3.0
height = max(int(len(name)/(1.0 - ratio) + 0.5), 1)
width = max(len(name)/height, 32)
# TODO: break lines in symbols
name = textwrap.fill(name, width, break_long_words=False)
# Take away spaces
name = name.replace(", ", ",")
name = name.replace("> >", ">>")
name = name.replace("> >", ">>") # catch consecutive
return name
def compress_function_name(self, name):
"""Compress function name according to the user preferences."""
if self.options.strip:
name = self.strip_function_name(name)
if self.options.wrap:
name = self.wrap_function_name(name)
# TODO: merge functions with same resulting name
return name
def write_graph(self):
dot = DotWriter(self.output)
profile = self.profile
profile.prune(self.options.node_thres/100.0, self.options.edge_thres/100.0)
for function in profile.functions.itervalues():
function.name = self.compress_function_name(function.name)
dot.graph(profile, self.theme)
if __name__ == '__main__':
Main().main()