2018-02-19 09:23:35 -05:00
|
|
|
import static org.junit.Assert.assertEquals;
|
|
|
|
import static org.junit.Assert.assertFalse;
|
2018-02-15 12:37:38 -05:00
|
|
|
import static org.junit.Assert.assertNotNull;
|
|
|
|
|
2018-02-19 09:23:35 -05:00
|
|
|
import java.awt.List;
|
2018-02-15 07:46:02 -05:00
|
|
|
import java.io.File;
|
2018-02-21 13:26:20 -05:00
|
|
|
import java.io.IOException;
|
|
|
|
import java.nio.file.Files;
|
|
|
|
import java.nio.file.Path;
|
|
|
|
import java.nio.file.Paths;
|
2018-02-19 09:23:35 -05:00
|
|
|
import java.util.ArrayList;
|
2018-02-15 12:37:38 -05:00
|
|
|
|
2018-02-15 07:46:02 -05:00
|
|
|
import org.opencv.core.Core;
|
|
|
|
import org.opencv.core.CvType;
|
|
|
|
import org.opencv.core.Mat;
|
2018-02-21 13:26:20 -05:00
|
|
|
import org.opencv.core.Point;
|
2018-02-15 12:37:38 -05:00
|
|
|
import org.opencv.core.Scalar;
|
|
|
|
import org.opencv.core.Size;
|
2018-02-19 09:23:35 -05:00
|
|
|
import org.opencv.dnn.DictValue;
|
2018-02-15 07:46:02 -05:00
|
|
|
import org.opencv.dnn.Dnn;
|
2018-02-19 09:23:35 -05:00
|
|
|
import org.opencv.dnn.Layer;
|
2018-02-15 07:46:02 -05:00
|
|
|
import org.opencv.dnn.Net;
|
2018-02-15 12:37:38 -05:00
|
|
|
import org.opencv.imgcodecs.Imgcodecs;
|
|
|
|
import org.opencv.imgproc.Imgproc;
|
2018-02-21 13:26:20 -05:00
|
|
|
import org.tensorflow.DataType;
|
|
|
|
import org.tensorflow.Graph;
|
|
|
|
import org.tensorflow.Output;
|
|
|
|
import org.tensorflow.SavedModelBundle;
|
|
|
|
import org.tensorflow.Session;
|
|
|
|
import org.tensorflow.Tensor;
|
|
|
|
import org.tensorflow.TensorFlow;
|
|
|
|
import org.tensorflow.types.UInt8;
|
2018-02-15 07:46:02 -05:00
|
|
|
|
|
|
|
public class ObjectDetector {
|
|
|
|
|
|
|
|
String inputImagePath;
|
|
|
|
String inputModelPath;
|
2018-02-15 12:37:38 -05:00
|
|
|
String inputModelArgumentsPath;
|
|
|
|
|
|
|
|
Net net;
|
2018-02-15 07:46:02 -05:00
|
|
|
|
2018-02-19 09:23:35 -05:00
|
|
|
public ObjectDetector() throws Exception {
|
2018-02-15 12:37:38 -05:00
|
|
|
this.inputImagePath = "/home/dpapp/tensorflow-1.5.0/models/raccoon_dataset/test_images/ironOre_test_9.jpg";
|
2018-02-19 09:23:35 -05:00
|
|
|
this.inputModelPath = "/home/dpapp/tensorflow-1.5.0/models/raccoon_dataset/results/checkpoint_23826/frozen_graph_inference.pb";
|
2018-02-21 13:26:20 -05:00
|
|
|
this.inputModelArgumentsPath = "/home/dpapp/tensorflow-1.5.0/models/raccoon_dataset/training/graph.pbtxt";
|
2018-02-19 09:23:35 -05:00
|
|
|
|
|
|
|
File f = new File(inputImagePath);
|
|
|
|
if(!f.exists()) throw new Exception("Test image is missing: " + inputImagePath);
|
|
|
|
File f1 = new File(inputModelPath);
|
|
|
|
if(!f1.exists()) throw new Exception("Test image is missing: " + inputModelPath);
|
|
|
|
File f2 = new File(inputModelArgumentsPath);
|
|
|
|
if(!f2.exists()) throw new Exception("Test image is missing: " + inputModelArgumentsPath);
|
|
|
|
|
2018-02-15 12:37:38 -05:00
|
|
|
net = Dnn.readNetFromTensorflow(inputModelPath, inputModelArgumentsPath);
|
2018-02-15 07:46:02 -05:00
|
|
|
}
|
|
|
|
|
2018-02-21 13:26:20 -05:00
|
|
|
|
|
|
|
|
|
|
|
|
2018-02-19 09:23:35 -05:00
|
|
|
public void testGetLayerTypes() {
|
|
|
|
ArrayList<String> layertypes = new ArrayList();
|
|
|
|
net.getLayerTypes(layertypes);
|
|
|
|
|
|
|
|
assertFalse("No layer types returned!", layertypes.isEmpty());
|
|
|
|
}
|
|
|
|
|
|
|
|
public void testGetLayer() {
|
|
|
|
ArrayList<String> layernames = (ArrayList<String>) net.getLayerNames();
|
|
|
|
|
|
|
|
assertFalse("Test net returned no layers!", layernames.isEmpty());
|
|
|
|
|
|
|
|
String testLayerName = layernames.get(0);
|
|
|
|
|
|
|
|
DictValue layerId = new DictValue(testLayerName);
|
|
|
|
|
|
|
|
assertEquals("DictValue did not return the string, which was used in constructor!", testLayerName, layerId.getStringValue());
|
|
|
|
|
|
|
|
Layer layer = net.getLayer(layerId);
|
|
|
|
|
|
|
|
assertEquals("Layer name does not match the expected value!", testLayerName, layer.get_name());
|
|
|
|
}
|
|
|
|
|
2018-02-21 13:26:20 -05:00
|
|
|
public Mat testImage() throws Exception {
|
|
|
|
final int IN_WIDTH = 300;
|
|
|
|
final int IN_HEIGHT = 300;
|
|
|
|
final float WH_RATIO = (float)IN_WIDTH / IN_HEIGHT;
|
|
|
|
final double IN_SCALE_FACTOR = 0.007843;
|
|
|
|
final double MEAN_VAL = 127.5;
|
|
|
|
final double THRESHOLD = 0.2;
|
2018-02-19 09:23:35 -05:00
|
|
|
|
2018-02-21 13:26:20 -05:00
|
|
|
Mat frame = Imgcodecs.imread(inputImagePath);
|
|
|
|
Imgproc.cvtColor(frame, frame, Imgproc.COLOR_RGBA2RGB);
|
|
|
|
assertNotNull("Loading image from file failed!", frame);
|
2018-02-19 09:23:35 -05:00
|
|
|
|
2018-02-21 13:26:20 -05:00
|
|
|
Mat blob = Dnn.blobFromImage(frame, IN_SCALE_FACTOR,
|
|
|
|
new Size(IN_WIDTH, IN_HEIGHT),
|
|
|
|
new Scalar(MEAN_VAL, MEAN_VAL, MEAN_VAL), false, false);
|
|
|
|
net.setInput(blob);
|
|
|
|
Mat detections = net.forward();
|
|
|
|
|
|
|
|
int cols = frame.cols();
|
|
|
|
int rows = frame.rows();
|
|
|
|
|
|
|
|
Size cropSize;
|
|
|
|
if ((float)cols / rows > WH_RATIO) {
|
|
|
|
cropSize = new Size(rows * WH_RATIO, rows);
|
|
|
|
} else {
|
|
|
|
cropSize = new Size(cols, cols / WH_RATIO);
|
|
|
|
}
|
|
|
|
|
|
|
|
int y1 = (int)(rows - cropSize.height) / 2;
|
|
|
|
int y2 = (int)(y1 + cropSize.height);
|
|
|
|
int x1 = (int)(cols - cropSize.width) / 2;
|
|
|
|
int x2 = (int)(x1 + cropSize.width);
|
|
|
|
Mat subFrame = frame.submat(y1, y2, x1, x2);
|
|
|
|
|
|
|
|
cols = subFrame.cols();
|
|
|
|
rows = subFrame.rows();
|
2018-02-15 12:37:38 -05:00
|
|
|
|
2018-02-21 13:26:20 -05:00
|
|
|
detections = detections.reshape(1, (int)detections.total() / 7);
|
2018-02-15 12:37:38 -05:00
|
|
|
|
2018-02-21 13:26:20 -05:00
|
|
|
for (int i = 0; i < detections.rows(); ++i) {
|
|
|
|
double confidence = detections.get(i, 2)[0];
|
|
|
|
if (confidence > THRESHOLD) {
|
|
|
|
int classId = (int)detections.get(i, 1)[0];
|
2018-02-15 12:37:38 -05:00
|
|
|
|
2018-02-21 13:26:20 -05:00
|
|
|
int xLeftBottom = (int)(detections.get(i, 3)[0] * cols);
|
|
|
|
int yLeftBottom = (int)(detections.get(i, 4)[0] * rows);
|
|
|
|
int xRightTop = (int)(detections.get(i, 5)[0] * cols);
|
|
|
|
int yRightTop = (int)(detections.get(i, 6)[0] * rows);
|
2018-02-15 12:37:38 -05:00
|
|
|
|
2018-02-21 13:26:20 -05:00
|
|
|
// Draw rectangle around detected object.
|
|
|
|
Imgproc.rectangle(subFrame, new Point(xLeftBottom, yLeftBottom),
|
|
|
|
new Point(xRightTop, yRightTop),
|
|
|
|
new Scalar(0, 255, 0));
|
|
|
|
String label = "ironOre" + ": " + confidence;
|
|
|
|
int[] baseLine = new int[1];
|
|
|
|
Size labelSize = Imgproc.getTextSize(label, Core.FONT_HERSHEY_SIMPLEX, 0.5, 1, baseLine);
|
|
|
|
|
|
|
|
// Draw background for label.
|
|
|
|
Imgproc.rectangle(subFrame, new Point(xLeftBottom, yLeftBottom - labelSize.height),
|
|
|
|
new Point(xLeftBottom + labelSize.width, yLeftBottom + baseLine[0]),
|
|
|
|
new Scalar(255, 255, 255), Core.FILLED);
|
|
|
|
|
|
|
|
// Write class name and confidence.
|
|
|
|
Imgproc.putText(subFrame, label, new Point(xLeftBottom, yLeftBottom),
|
|
|
|
Core.FONT_HERSHEY_SIMPLEX, 0.5, new Scalar(0, 0, 0));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return frame;
|
2018-02-15 07:46:02 -05:00
|
|
|
}
|
2018-02-19 09:23:35 -05:00
|
|
|
|
2018-02-15 07:46:02 -05:00
|
|
|
|
2018-02-15 12:37:38 -05:00
|
|
|
public static void main( String[] args ) throws Exception {
|
2018-02-15 07:46:02 -05:00
|
|
|
System.out.println("Reading model from TensorFlow...");
|
|
|
|
|
|
|
|
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
|
|
|
|
|
|
|
|
ObjectDetector objectDetector = new ObjectDetector();
|
2018-02-19 09:23:35 -05:00
|
|
|
|
|
|
|
|
|
|
|
objectDetector.testGetLayerTypes();
|
|
|
|
objectDetector.testGetLayer();
|
2018-02-15 12:37:38 -05:00
|
|
|
objectDetector.testImage();
|
2018-02-21 13:26:20 -05:00
|
|
|
/*
|
|
|
|
|
|
|
|
final int IMG_SIZE = 128;
|
|
|
|
final String value = "Hello from " + TensorFlow.version();
|
|
|
|
|
|
|
|
byte[] imageBytes = readAllBytesOrExit(Paths.get("/home/dpapp/tensorflow-1.5.0/models/raccoon_dataset/test_images/ironOre_test_9.jpg"));
|
|
|
|
Tensor image = constructAndExecuteGraphToNormalizeImage(imageBytes);
|
|
|
|
|
|
|
|
SavedModelBundle load = SavedModelBundle.load("/home/dpapp/tensorflow-1.5.0/models/raccoon_dataset/SavedModel/saved_model.pb");
|
|
|
|
|
|
|
|
long[] sitio2;
|
|
|
|
try (Graph g = load.graph()) {
|
|
|
|
try (Session s = load.session();
|
|
|
|
Tensor result = s.runner()
|
|
|
|
.feed("image_tensor", image)
|
|
|
|
.fetch("detection_boxes").run().get(0))
|
|
|
|
{
|
|
|
|
sitio2 = (long[]) result.copyTo(new long[1]);
|
|
|
|
System.out.print(sitio2[0]+"\n");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
load.close();
|
|
|
|
*/
|
2018-02-15 07:46:02 -05:00
|
|
|
System.out.println("Done...");
|
|
|
|
}
|
2018-02-21 13:26:20 -05:00
|
|
|
|
|
|
|
private static byte[] readAllBytesOrExit(Path path) {
|
|
|
|
try {
|
|
|
|
return Files.readAllBytes(path);
|
|
|
|
} catch (IOException e) {
|
|
|
|
System.err.println("Failed to read [" + path + "]: " + e.getMessage());
|
|
|
|
System.exit(1);
|
|
|
|
}
|
|
|
|
return null;
|
|
|
|
}
|
|
|
|
|
|
|
|
private static Tensor<Float> constructAndExecuteGraphToNormalizeImage(byte[] imageBytes) {
|
|
|
|
try (Graph g = new Graph()) {
|
|
|
|
GraphBuilder b = new GraphBuilder(g);
|
|
|
|
// Some constants specific to the pre-trained model at:
|
|
|
|
// https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip
|
|
|
|
//
|
|
|
|
// - The model was trained with images scaled to 224x224 pixels.
|
|
|
|
// - The colors, represented as R, G, B in 1-byte each were converted to
|
|
|
|
// float using (value - Mean)/Scale.
|
|
|
|
final int H = 224;
|
|
|
|
final int W = 224;
|
|
|
|
final float mean = 117f;
|
|
|
|
final float scale = 1f;
|
|
|
|
|
|
|
|
// Since the graph is being constructed once per execution here, we can use a constant for the
|
|
|
|
// input image. If the graph were to be re-used for multiple input images, a placeholder would
|
|
|
|
// have been more appropriate.
|
|
|
|
final Output<String> input = b.constant("input", imageBytes);
|
|
|
|
final Output<Float> output =
|
|
|
|
b.div(
|
|
|
|
b.sub(
|
|
|
|
b.resizeBilinear(
|
|
|
|
b.expandDims(
|
|
|
|
b.cast(b.decodeJpeg(input, 3), Float.class),
|
|
|
|
b.constant("make_batch", 0)),
|
|
|
|
b.constant("size", new int[] {H, W})),
|
|
|
|
b.constant("mean", mean)),
|
|
|
|
b.constant("scale", scale));
|
|
|
|
try (Session s = new Session(g)) {
|
|
|
|
return s.runner().fetch(output.op().name()).run().get(0).expect(Float.class);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static class GraphBuilder {
|
|
|
|
GraphBuilder(Graph g) {
|
|
|
|
this.g = g;
|
|
|
|
}
|
|
|
|
|
|
|
|
Output<Float> div(Output<Float> x, Output<Float> y) {
|
|
|
|
return binaryOp("Div", x, y);
|
|
|
|
}
|
|
|
|
|
|
|
|
<T> Output<T> sub(Output<T> x, Output<T> y) {
|
|
|
|
return binaryOp("Sub", x, y);
|
|
|
|
}
|
|
|
|
|
|
|
|
<T> Output<Float> resizeBilinear(Output<T> images, Output<Integer> size) {
|
|
|
|
return binaryOp3("ResizeBilinear", images, size);
|
|
|
|
}
|
|
|
|
|
|
|
|
<T> Output<T> expandDims(Output<T> input, Output<Integer> dim) {
|
|
|
|
return binaryOp3("ExpandDims", input, dim);
|
|
|
|
}
|
|
|
|
|
|
|
|
<T, U> Output<U> cast(Output<T> value, Class<U> type) {
|
|
|
|
DataType dtype = DataType.fromClass(type);
|
|
|
|
return g.opBuilder("Cast", "Cast")
|
|
|
|
.addInput(value)
|
|
|
|
.setAttr("DstT", dtype)
|
|
|
|
.build()
|
|
|
|
.<U>output(0);
|
|
|
|
}
|
|
|
|
|
|
|
|
Output<UInt8> decodeJpeg(Output<String> contents, long channels) {
|
|
|
|
return g.opBuilder("DecodeJpeg", "DecodeJpeg")
|
|
|
|
.addInput(contents)
|
|
|
|
.setAttr("channels", channels)
|
|
|
|
.build()
|
|
|
|
.<UInt8>output(0);
|
|
|
|
}
|
|
|
|
|
|
|
|
<T> Output<T> constant(String name, Object value, Class<T> type) {
|
|
|
|
try (Tensor<T> t = Tensor.<T>create(value, type)) {
|
|
|
|
return g.opBuilder("Const", name)
|
|
|
|
.setAttr("dtype", DataType.fromClass(type))
|
|
|
|
.setAttr("value", t)
|
|
|
|
.build()
|
|
|
|
.<T>output(0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
Output<String> constant(String name, byte[] value) {
|
|
|
|
return this.constant(name, value, String.class);
|
|
|
|
}
|
|
|
|
|
|
|
|
Output<Integer> constant(String name, int value) {
|
|
|
|
return this.constant(name, value, Integer.class);
|
|
|
|
}
|
|
|
|
|
|
|
|
Output<Integer> constant(String name, int[] value) {
|
|
|
|
return this.constant(name, value, Integer.class);
|
|
|
|
}
|
|
|
|
|
|
|
|
Output<Float> constant(String name, float value) {
|
|
|
|
return this.constant(name, value, Float.class);
|
|
|
|
}
|
|
|
|
|
|
|
|
private <T> Output<T> binaryOp(String type, Output<T> in1, Output<T> in2) {
|
|
|
|
return g.opBuilder(type, type).addInput(in1).addInput(in2).build().<T>output(0);
|
|
|
|
}
|
|
|
|
|
|
|
|
private <T, U, V> Output<T> binaryOp3(String type, Output<U> in1, Output<V> in2) {
|
|
|
|
return g.opBuilder(type, type).addInput(in1).addInput(in2).build().<T>output(0);
|
|
|
|
}
|
|
|
|
private Graph g;
|
|
|
|
}
|
|
|
|
|
2018-02-15 07:46:02 -05:00
|
|
|
}
|