1
0
mirror of https://github.com/raphnet/gc_n64_usb-v3 synced 2024-12-21 23:08:53 -05:00
gc_n64_usb-v3/tools/mempak_gcn64usb.c
Raphael Assenat 4178ca2e52 tool to tools
2015-12-06 23:10:27 -05:00

323 lines
7.6 KiB
C

/* gc_n64_usb : Gamecube or N64 controller to USB adapter firmware
Copyright (C) 2007-2015 Raphael Assenat <raph@raphnet.net>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include "gcn64lib.h"
#include "gcn64.h"
#include "mempak.h"
#include "mempak_gcn64usb.h"
#include "hexdump.h"
#include "../gcn64_protocol.h"
#include "../requests.h"
/* __calc_address_crc is from libdragon which is public domain. */
/**
* @brief Calculate the 5 bit CRC on a mempak address
*
* This function, given an address intended for a mempak read or write, will
* calculate the CRC on the address, returning the corrected address | CRC.
*
* @param[in] address
* The mempak address to calculate CRC over
*
* @return The mempak address | CRC
*/
static uint16_t __calc_address_crc( uint16_t address )
{
/* CRC table */
uint16_t xor_table[16] = { 0x0, 0x0, 0x0, 0x0, 0x0, 0x15, 0x1F, 0x0B, 0x16, 0x19, 0x07, 0x0E, 0x1C, 0x0D, 0x1A, 0x01 };
uint16_t crc = 0;
int i;
/* Make sure we have a valid address */
address &= ~0x1F;
/* Go through each bit in the address, and if set, xor the right value into the output */
for( i = 15; i >= 5; i-- )
{
/* Is this bit set? */
if( ((address >> i) & 0x1) )
{
crc ^= xor_table[i];
}
}
/* Just in case */
crc &= 0x1F;
/* Create a new address with the CRC appended */
return address | crc;
}
/* __calc_data_crc is from libdragon which is public domain. */
/**
* @brief Calculate the 8 bit CRC over a 32-byte block of data
*
* This function calculates the 8 bit CRC appropriate for checking a 32-byte
* block of data intended for or retrieved from a mempak.
*
* @param[in] data
* Pointer to 32 bytes of data to run the CRC over
*
* @return The calculated 8 bit CRC over the data
*/
static uint8_t __calc_data_crc( uint8_t *data )
{
uint8_t ret = 0;
int i,j;
for( i = 0; i <= 32; i++ )
{
for( j = 7; j >= 0; j-- )
{
int tmp = 0;
if( ret & 0x80 )
{
tmp = 0x85;
}
ret <<= 1;
if( i < 32 )
{
if( data[i] & (0x01 << j) )
{
ret |= 0x1;
}
}
ret ^= tmp;
}
}
return ret;
}
int gcn64lib_mempak_readBlock(gcn64_hdl_t hdl, unsigned short addr, unsigned char dst[32])
{
unsigned char cmd[64];
//int cmdlen;
int n;
uint16_t addr_crc;
unsigned char crc;
addr_crc = __calc_address_crc(addr);
cmd[0] = N64_EXPANSION_READ;
cmd[1] = addr_crc>>8; // Address high byte
cmd[2] = addr_crc&0xff; // Address low byte
n = gcn64lib_rawSiCommand(hdl, 0, cmd, 3, cmd, sizeof(cmd));
if (n != 33) {
printf("Hey! %d\n", n);
return -1;
}
memcpy(dst, cmd, 0x20);
crc = __calc_data_crc(dst);
if (crc != cmd[32]) {
fprintf(stderr, "Bad CRC reading address 0x%04x\n", addr);
return -1;
}
return 0x20;
}
int gcn64lib_mempak_detect(gcn64_hdl_t hdl)
{
unsigned char buf[40];
int res;
unsigned short addr = __calc_address_crc(0x8000);
int first_read, second_read;
buf[0] = N64_GET_CAPABILITIES;
res = gcn64lib_rawSiCommand(hdl, 0, buf, 1, buf, sizeof(buf));
if (res < 0) {
return -1;
}
if (res != 3) {
return -1;
}
if (!(buf[2] & 0x01)) {
printf("No accessory connected\n");
return -1;
}
/* first write 32 0xFEs */
memset(buf, 0xfe, 32);
res = gcn64lib_n64_expansionWrite(hdl, addr, buf, 32);
if (res < 0) {
return -1;
}
if (res != 0xE1) {
return -1;
}
/* Read back (normally zeros) */
res = gcn64lib_n64_expansionRead(hdl, addr, buf, sizeof(buf));
if (res < 0) {
return -1;
}
first_read = buf[0];
/* Now write 32 0x80s */
memset(buf, 0x80, 32);
res = gcn64lib_n64_expansionWrite(hdl, addr, buf, 32);
if (res < 0) {
return -1;
}
/* Normally, read back (0x00 on memory card, 0x80 on rumble pak)
*
* But this simple detection method (from libdragon) does not detect one of my
* memory cards (it looks like a rumble pack).
*
* But I found out that the values that are read back are just always equal to while
* for other hardware, reading after writing the 0xfe values always seem to return 0x00.
*/
res = gcn64lib_n64_expansionRead(hdl, addr, buf, sizeof(buf));
if (res < 0) {
printf("failed to detect mempak: %d\n", res);
return -1;
}
second_read = buf[0];
// Values seen here are
//
// - Official Nintendo rumble pack: 0x00
// - Yobo rumble pack: 0x00
// - Yobo mempak: 0x00
// - Unknown "super memory card 1000": 0xFE
//
if (first_read == 0xfe) {
printf("super memory card 1000 probably detected\n");
return 0;
}
// Values seen here are
//
// - Official Nintendo rumble pack: 0x80
// - Yobo rumble pack: 0x80
// - Yobo mempak: 0x00
// - Unknown "super memory card 1000": 0x80 (but this card is catched above)
if (second_read == 0x80) {
return -1; // rumble
} else {
return 0;
}
}
int gcn64lib_mempak_writeBlock(gcn64_hdl_t hdl, unsigned short addr, unsigned char data[32])
{
return gcn64lib_n64_expansionWrite(hdl, __calc_address_crc(addr), data, 32);
}
/**
* \brief Read a physical mempak
* \param hdl The Adapter handler
* \param channel The adapter channel (for multi-port adapters)
* \param pak Pointer to mempak_structure pointer to store the new mempak
* \param progressCb Callback to notify read progress (called after each block). The callback can return non-zero to abort.
* \return 0: Success, -1: No mempak, -2: IO/error, -3: Other errors, -4: Aborted
*/
int gcn64lib_mempak_download(gcn64_hdl_t hdl, int channel, mempak_structure_t **mempak, int (*progressCb)(int cur_addr, void *ctx), void *ctx)
{
mempak_structure_t *pak;
unsigned short addr;
if (!mempak) {
return -3;
}
if (gcn64lib_mempak_detect(hdl)) {
return -1;
}
pak = calloc(1, sizeof(mempak_structure_t));
if (!pak) {
return -3;
}
pak->file_format = MPK_FORMAT_MPK;
for (addr = 0x0000; addr < MEMPAK_MEM_SIZE; addr+= 0x20)
{
if (gcn64lib_mempak_readBlock(hdl, addr, &pak->data[addr]) != 0x20) {
fprintf(stderr, "Error: Short read\n");
free(pak);
return -2;
}
if (progressCb) {
if (progressCb(addr, ctx)) {
return -4;
}
}
}
*mempak = pak;
return 0;
}
int gcn64lib_mempak_upload(gcn64_hdl_t hdl, int channel, mempak_structure_t *pak, int (*progressCb)(int cur_addr, void *ctx), void *ctx)
{
unsigned short addr;
unsigned char readback[0x20];
int res;
if (!pak) {
return -3;
}
if (gcn64lib_mempak_detect(hdl)) {
return -1;
}
for (addr = 0x0000; addr < MEMPAK_MEM_SIZE; addr+= 0x20)
{
res = gcn64lib_mempak_writeBlock(hdl, addr, &pak->data[addr]);
if (res < 0) {
fprintf(stderr, "Write error\n");
return -2;
}
if (0x20 != gcn64lib_mempak_readBlock(hdl, addr, readback)) {
// TODO : Why not retry?
fprintf(stderr, "readback failed\n");
return -2;
}
if (memcmp(readback, &pak->data[addr], 0x20)) {
fprintf(stderr, "Readback compare failed\n");
return -2;
}
if (progressCb) {
if (progressCb(addr, ctx)) {
return -4;
}
}
}
return 0;
}