mirror of
https://github.com/raphnet/gc_n64_usb-v3
synced 2024-11-10 19:25:07 -05:00
283 lines
6.9 KiB
C
283 lines
6.9 KiB
C
/* gc_n64_usb : Gamecube or N64 controller to USB firmware
|
|
Copyright (C) 2007-2015 Raphael Assenat <raph@raphnet.net>
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#include <avr/io.h>
|
|
#include <avr/interrupt.h>
|
|
#include <util/delay.h>
|
|
|
|
#include "gcn64_protocol.h"
|
|
#include "gcn64txrx.h"
|
|
|
|
#undef FORCE_KEYBOARD
|
|
|
|
#define GCN64_BUF_SIZE 600
|
|
static unsigned char gcn64_workbuf[GCN64_BUF_SIZE];
|
|
|
|
/******** IO port definitions and options **************/
|
|
#ifndef STK525
|
|
#define GCN64_DATA_PORT PORTD
|
|
#define GCN64_DATA_DDR DDRD
|
|
#define GCN64_DATA_PIN PIND
|
|
#define GCN64_DATA_BIT (1<<0)
|
|
#define GCN64_BIT_NUM_S "0" // for asm
|
|
#else
|
|
#define GCN64_DATA_PORT PORTA
|
|
#define GCN64_DATA_DDR DDRA
|
|
#define GCN64_DATA_PIN PINA
|
|
#define GCN64_DATA_BIT (1<<0)
|
|
#define GCN64_BIT_NUM_S "0" // for asm
|
|
#endif
|
|
|
|
#define DISABLE_INTS_DURING_COMM
|
|
|
|
|
|
/* Read a byte from the buffer (where 1 byte is 1 bit).
|
|
* MSb first.
|
|
*/
|
|
unsigned char gcn64_protocol_getByte(int offset)
|
|
{
|
|
unsigned char val, b;
|
|
unsigned char volatile *addr = gcn64_workbuf + offset;
|
|
|
|
for (b=0x80, val=0; b; b>>=1)
|
|
{
|
|
if (*addr)
|
|
val |= b;
|
|
addr++;
|
|
}
|
|
return val;
|
|
}
|
|
|
|
void gcn64_protocol_getBytes(int offset, int n_bytes, unsigned char *dstbuf)
|
|
{
|
|
int i;
|
|
|
|
for (i=0; i<n_bytes; i++) {
|
|
*dstbuf = gcn64_protocol_getByte(offset + (i*8));
|
|
dstbuf++;
|
|
}
|
|
}
|
|
|
|
/* \brief Decode the received length of low/high states to byte-per-bit format
|
|
*
|
|
* The result is in workbuf.
|
|
*
|
|
**/
|
|
static void gcn64_decodeWorkbuf(unsigned int count)
|
|
{
|
|
unsigned int i;
|
|
volatile unsigned char *output = gcn64_workbuf;
|
|
volatile unsigned char *input = gcn64_workbuf;
|
|
unsigned char t;
|
|
|
|
//
|
|
// ________
|
|
// ________/
|
|
//
|
|
// [i*2] [i*2+1]
|
|
//
|
|
// ________________
|
|
// 0 : ____/
|
|
// ____
|
|
// 1 : ________________/
|
|
//
|
|
// The timings on a real N64 are
|
|
//
|
|
// 0 : 1 us low, 3 us high
|
|
// 1 : 3 us low, 1 us high
|
|
//
|
|
// However, HORI pads use something similar to
|
|
//
|
|
// 0 : 1.5 us low, 4.5 us high
|
|
// 1 : 4.5 us low, 1.5 us high
|
|
//
|
|
//
|
|
// No64 us = microseconds
|
|
|
|
// This operation takes approximately 100uS on 64bit gamecube messages
|
|
for (i=0; i<count; i++) {
|
|
t = *input;
|
|
input++;
|
|
|
|
*output = t < *input;
|
|
|
|
input++;
|
|
output++;
|
|
}
|
|
}
|
|
|
|
void gcn64protocol_hwinit(void)
|
|
{
|
|
// data as input
|
|
GCN64_DATA_DDR &= ~(GCN64_DATA_BIT);
|
|
|
|
// keep data low. By toggling the direction, we make the
|
|
// pin act as an open-drain output.
|
|
GCN64_DATA_PORT &= ~GCN64_DATA_BIT;
|
|
|
|
/* debug bit PORTB4 (MISO) */
|
|
DDRB |= 0x10;
|
|
PORTB &= ~0x10;
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* \brief Send n data bytes + stop bit, wait for answer.
|
|
* \return The number of bits received, 0 on timeout/error.
|
|
*
|
|
* The result is in gcn64_workbuf, where each byte represents
|
|
* a bit.
|
|
*/
|
|
int gcn64_transaction(unsigned char *data_out, int data_out_len)
|
|
{
|
|
int count;
|
|
unsigned char sreg = SREG;
|
|
|
|
#ifdef DISABLE_INTS_DURING_COMM
|
|
cli();
|
|
#endif
|
|
gcn64_sendBytes(data_out, data_out_len);
|
|
//count = gcn64_receive();
|
|
count = gcn64_receiveBits(gcn64_workbuf, 0);
|
|
SREG = sreg;
|
|
|
|
if (!count)
|
|
return 0;
|
|
|
|
if (!(count & 0x01)) {
|
|
// If we don't get an odd number of level lengths from gcn64_receive
|
|
// something is wrong.
|
|
//
|
|
// The stop bit is a short (~1us) low state followed by an "infinite"
|
|
// high state, which timeouts and lets the function return. This
|
|
// is why we should receive and odd number of lengths.
|
|
return 0;
|
|
}
|
|
|
|
gcn64_decodeWorkbuf(count);
|
|
|
|
/* this delay is required on N64 controllers. Otherwise, after sending
|
|
* a rumble-on or rumble-off command (probably init too), the following
|
|
* get status fails. This starts to work at 2us. 5 should be safe. */
|
|
_delay_us(5);
|
|
|
|
/* return the number of full bits received. */
|
|
return (count-1) / 2;
|
|
}
|
|
|
|
|
|
#if (GC_GETID != N64_GET_CAPABILITIES)
|
|
#error N64 vs GC detection commnad broken
|
|
#endif
|
|
int gcn64_detectController(void)
|
|
{
|
|
unsigned char tmp = GC_GETID;
|
|
int count;
|
|
unsigned short id;
|
|
|
|
count = gcn64_transaction(&tmp, 1);
|
|
if (count == 0) {
|
|
return CONTROLLER_IS_ABSENT;
|
|
}
|
|
if (count != 24) {
|
|
return CONTROLLER_IS_UNKNOWN;
|
|
}
|
|
|
|
/*
|
|
* -- Standard gamecube controller answer:
|
|
* 0000 1001 0000 0000 0010 0011 : 0x090023 or
|
|
* 0000 1001 0000 0000 0010 0000 : 0x090020
|
|
*
|
|
* 0000 1001 0000 0000 0010 0000
|
|
*
|
|
* -- Wavebird gamecube controller
|
|
* 1010 1000 0000 0000 0000 0000 : 0xA80000
|
|
* (receiver first power up, controller off)
|
|
*
|
|
* 1110 1001 1010 0000 0001 0111 : 0xE9A017
|
|
* (controller on)
|
|
*
|
|
* 1010 1000 0000
|
|
*
|
|
* -- Intec wireless gamecube controller
|
|
* 0000 1001 0000 0000 0010 0000 : 0x090020
|
|
*
|
|
*
|
|
* -- Standard N64 controller
|
|
* 0000 0101 0000 0000 0000 0000 : 0x050000 (no pack)
|
|
* 0000 0101 0000 0000 0000 0001 : 0x050001 With expansion pack
|
|
* 0000 0101 0000 0000 0000 0010 : 0x050002 Expansion pack removed
|
|
*
|
|
* -- Ascii keyboard (keyboard connector)
|
|
* 0000 1000 0010 0000 0000 0000 : 0x082000
|
|
*
|
|
* Ok, so based on the above, when the second nibble is a 9 or 8, a
|
|
* gamecube compatible controller is present. If on the other hand
|
|
* we have a 5, then we are communicating with a N64 controller.
|
|
*
|
|
* This conclusion appears to be corroborated by my old printout of
|
|
* the document named "Yet another gamecube documentation (but one
|
|
* that's worth printing). The document explains that and ID can
|
|
* be read by sending what they call the 'SI command 0x00 to
|
|
* which the controller replies with 3 bytes. (Clearly, that's
|
|
* what we are doing here). The first 16 bits are the id, and they
|
|
* list, among other type of devices, the following:
|
|
*
|
|
* 0x0500 N64 controller
|
|
* 0x0900 GC standard controller
|
|
* 0x0900 Dkongas
|
|
* 0xe960 Wavebird
|
|
* 0xe9a0 Wavebird
|
|
* 0xa800 Wavebird
|
|
* 0xebb0 Wavebird
|
|
*
|
|
* This last entry worries me. I never observed it, but who knows
|
|
* what the user will connect? Better be safe and consider 0xb as
|
|
* a gamecube controller too.
|
|
*
|
|
* */
|
|
|
|
id = gcn64_protocol_getByte(0)<<8;
|
|
id |= gcn64_protocol_getByte(8);
|
|
|
|
#ifdef FORCE_KEYBOARD
|
|
return CONTROLLER_IS_GC_KEYBOARD;
|
|
#endif
|
|
|
|
switch (id >> 8) {
|
|
case 0x05:
|
|
return CONTROLLER_IS_N64;
|
|
|
|
case 0x09: // normal controllers
|
|
case 0x0b: // Never saw this one, but it is mentionned above.
|
|
return CONTROLLER_IS_GC;
|
|
|
|
case 0x08:
|
|
if (id == 0x0820) {
|
|
// Ascii keyboard
|
|
return CONTROLLER_IS_GC_KEYBOARD;
|
|
}
|
|
// wavebird, controller off.
|
|
return CONTROLLER_IS_GC;
|
|
|
|
default:
|
|
return CONTROLLER_IS_UNKNOWN;
|
|
}
|
|
|
|
return 0;
|
|
}
|