You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

884 lines
19 KiB

/* gc_n64_usb : Gamecube or N64 controller to USB firmware
Copyright (C) 2007-2016 Raphael Assenat <raph@raphnet.net>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <avr/io.h>
#include <avr/interrupt.h>
#include <avr/pgmspace.h>
#include "usb.h"
#undef VERBOSE
#define STATE_POWERED 0
#define STATE_DEFAULT 1
#define STATE_ADDRESS 2
#define STATE_CONFIGURED 3
static volatile uint8_t g_usb_suspend;
static uint8_t g_ep0_buf[64];
static uint8_t g_device_state = STATE_DEFAULT;
static uint8_t g_current_config;
static void *interrupt_data;
static volatile int interrupt_data_len = -1;
static void *interrupt_data2;
static volatile int interrupt_data_len2 = -1;
static void *interrupt_data3;
static volatile int interrupt_data_len3 = -1;
#define CONTROL_WRITE_BUFSIZE 64
static struct usb_request control_write_rq;
static volatile uint16_t control_write_len;
static volatile uint8_t control_write_in_progress;
static uint8_t control_write_buf[CONTROL_WRITE_BUFSIZE];
static const struct usb_parameters *g_params;
static void initControlWrite(const struct usb_request *rq)
{
memcpy(&control_write_rq, rq, sizeof(struct usb_request));
control_write_len = 0;
control_write_in_progress = 1;
// printf_P(PSTR("Init cw\r\n"));
}
static int wcslen(const wchar_t *str)
{
int i=0;
while (*str) {
str++;
i++;
}
return i;
}
/** Return the values for the UECFG1X register
*
* \return The EPSIZE bits if supported, 0xFF if invalid.
**/
static uint8_t getEPsizebits(int epsize)
{
switch(epsize)
{
case 64: return (1<<EPSIZE0)|(1<<EPSIZE1);
case 32: return (1<<EPSIZE1);
case 16: return (1<<EPSIZE0);
case 8: return 0;
}
return -1;
}
static void setupEndpoints()
{
uint8_t epsize;
int i;
/*** EP0 ***/
// Order from figure 23-2
UENUM = 0x00; // select endpoint
// UERST |= 0x01; // reset endpoint
UECONX = 1<<EPEN; // activate endpoint
UECFG0X = 0; // Control OUT
UEIENX = (1<<RXSTPE) | (1<<RXOUTE) | (1<<NAKINE); /* | (1<<STALLEDE) | (1<<NAKOUTE) | (1<<TXINE) | (1<<RXOUTE) */;
epsize = getEPsizebits(64);
UECFG1X |= epsize|(1<<ALLOC); // 64 bytes, one bank, and allocate
UEINTX = 0;
if (!(UESTA0X & (1<<CFGOK))) {
// printf_P("CFG EP0 fail\r\n");
return;
}
// printf_P("ok\r\n");
for (i=0; i<g_params->n_hid_interfaces; i++) {
UENUM = 0x01 + i; // select endpoint
UECONX = 1<<EPEN; // activate endpoint
UECFG0X = (3<<6) | (1<<EPDIR); // Interrupt IN
UEIENX = (1<<TXINE);
epsize = getEPsizebits(g_params->hid_params[i].endpoint_size);
if (epsize == 0xff) {
printf_P(PSTR("Invalid ep size\r\n"));
return;
}
UECFG1X = epsize|(1<<ALLOC); // one bank, and allocate
UEINTX = 0;
if (!(UESTA0X & (1<<CFGOK))) {
printf_P(PSTR("CFG EP fail\r\n"));
return;
}
}
}
// Requires UENUM already set
static uint16_t readEP2buf(uint8_t *dst)
{
uint16_t len;
int i;
#ifdef UEBCHX
len = UEBCLX | (UEBCHX << 8);
#else
len = UEBCLX;
#endif
for (i=0; i<len; i++) {
*dst = UEDATX;
dst++;
}
return len;
}
static void buf2EP(uint8_t epnum, const void *src, uint16_t len, uint16_t max_len, uint8_t progmem)
{
int i;
UENUM = epnum; // select endpoint
if (len > max_len) {
len = max_len;
}
if (progmem) {
const unsigned char *s = src;
for (i=0; i<len; i++) {
UEDATX = pgm_read_byte(s);
s++;
}
} else {
const unsigned char *s = src;
for (i=0; i<len; i++) {
UEDATX = *s;
s++;
}
}
}
/**
*/
static void longDescriptorHelper(const uint8_t *data, uint16_t len, uint16_t rq_len, uint8_t progmem)
{
uint16_t todo = rq_len > len ? len : rq_len;
uint16_t pos = 0;
while(1)
{
if (todo > 64) {
buf2EP(0, data+pos, 64, 64, progmem);
UEINTX &= ~(1<<TXINI);
pos += 64;
todo -= 64;
while (!(UEINTX & (1<<TXINI)));
}
else {
buf2EP(0, data+pos, todo,
todo,
progmem);
UEINTX &= ~(1<<TXINI);
while (!(UEINTX & (1<<TXINI)));
break;
}
}
}
static void handleSetupPacket(struct usb_request *rq)
{
char unhandled = 0;
#ifdef VERBOSE
printf_P(PSTR("t: %02x, rq: 0x%02x, val: %04x, l: %d\r\n"), rq->bmRequestType, rq->bRequest, rq->wValue, rq->wLength);
#endif
if (USB_RQT_IS_HOST_TO_DEVICE(rq->bmRequestType))
{
switch (rq->bmRequestType & USB_RQT_RECIPIENT_MASK)
{
case USB_RQT_RECIPIENT_DEVICE:
switch (rq->bRequest)
{
case USB_RQ_SET_ADDRESS:
UDADDR = rq->wValue;
while (!(UEINTX & (1<<TXINI)));
UEINTX &= ~(1<<TXINI);
while (!(UEINTX & (1<<TXINI)));
UDADDR |= (1<<ADDEN);
#ifdef VERBOSE
printf_P(PSTR("Addr: %d\r\n"), rq->wValue);
#endif
if (!rq->wValue) {
g_device_state = STATE_DEFAULT;
} else {
g_device_state = STATE_ADDRESS;
}
break;
case USB_RQ_SET_CONFIGURATION:
g_current_config = rq->wValue;
if (!g_current_config) {
g_device_state = STATE_ADDRESS;
} else {
g_device_state = STATE_CONFIGURED;
}
while (!(UEINTX & (1<<TXINI)));
UEINTX &= ~(1<<TXINI);
#ifdef VERBOSE
printf_P(PSTR("Configured: %d\r\n"), g_current_config);
#endif
break;
default:
unhandled = 1;
}
break; // USB_RQT_RECIPIENT_DEVICE
case USB_RQT_RECIPIENT_INTERFACE:
switch(rq->bmRequestType & (USB_RQT_TYPE_MASK))
{
case USB_RQT_CLASS:
switch(rq->bRequest)
{
// case HID_CLSRQ_SET_IDLE:
// while (!(UEINTX & (1<<TXINI)));
// UEINTX &= ~(1<<TXINI);
// break;
case HID_CLSRQ_SET_REPORT:
while (!(UEINTX & (1<<TXINI)));
UEINTX &= ~(1<<TXINI);
initControlWrite(rq);
break;
default:
printf_P(PSTR("Unhandled class bRequest 0x%02x\n"), rq->bRequest);
unhandled = 1;
}
break;
default:
unhandled = 1;
}
break;
case USB_RQT_RECIPIENT_ENDPOINT:
case USB_RQT_RECIPIENT_OTHER:
default:
break;
}
}
// Request where we send data to the host. Handlers
// simply load the endpoint buffer and transmission
// is handled automatically.
if (USB_RQT_IS_DEVICE_TO_HOST(rq->bmRequestType))
{
switch (rq->bmRequestType & USB_RQT_RECIPIENT_MASK)
{
case USB_RQT_RECIPIENT_DEVICE:
switch (rq->bRequest)
{
case USB_RQ_GET_STATUS:
{
unsigned char status[2] = { 0x00, 0x00 };
// status[0] & 0x01 : Self powered
// status[1] & 0x02 : Remote wakeup
buf2EP(0, status, 2, rq->wLength, 0);
}
break;
case USB_RQ_GET_CONFIGURATION:
{
if (g_device_state != STATE_CONFIGURED) {
unsigned char zero = 0;
buf2EP(0, &zero, 1, rq->wLength, 0);
} else {
buf2EP(0, &g_current_config, 1, rq->wLength, 0);
}
}
break;
case USB_RQ_GET_DESCRIPTOR:
switch (rq->wValue >> 8)
{
case DEVICE_DESCRIPTOR:
buf2EP(0, (unsigned char*)g_params->devdesc,
sizeof(struct usb_device_descriptor), rq->wLength,
g_params->flags & USB_PARAM_FLAG_DEVDESC_PROGMEM);
break;
case CONFIGURATION_DESCRIPTOR:
// Would need to check index if more than 1 configs...
longDescriptorHelper(g_params->configdesc, g_params->configdesc_ttllen,
rq->wLength, g_params->flags & USB_PARAM_FLAG_CONFDESC_PROGMEM);
break;
case STRING_DESCRIPTOR:
{
int id, len, slen;
struct usb_string_descriptor_header hdr;
id = (rq->wValue & 0xff);
if (id > 0 && id <= g_params->num_strings)
{
id -= 1; // Our string table is zero-based
len = rq->wLength;
slen = wcslen(g_params->strings[id]) << 1;
hdr.bLength = sizeof(hdr) + slen;
hdr.bDescriptorType = STRING_DESCRIPTOR;
buf2EP(0, (unsigned char*)&hdr, 2, len, 0);
len -= 2;
buf2EP(0, (unsigned char*)g_params->strings[id], slen, len, 0);
}
else if (id == 0) // Table of supported languages (string id 0)
{
unsigned char languages[4] = {
4, STRING_DESCRIPTOR, 0x09, 0x10 // English (Canadian)
};
buf2EP(0, languages, 4, rq->wLength, 0);
}
else
{
printf_P(PSTR("Unknown string id\r\n"));
}
}
break;
case DEVICE_QUALIFIER_DESCRIPTOR:
// Full speed devices must respond with a request error.
unhandled = 1;
break;
default:
// printf_P(PSTR("Unhandled descriptor 0x%02x\n"), rq->wValue>>8);
unhandled = 1;
}
break;
default:
unhandled = 1;
}
break;
case USB_RQT_RECIPIENT_INTERFACE:
switch(rq->bmRequestType & (USB_RQT_TYPE_MASK))
{
case USB_RQT_STANDARD:
switch (rq->bRequest)
{
case USB_RQ_GET_STATUS:
{ // 9.4.5 Get Status, Figure 9-5. Reserved (0)
unsigned char status[2] = { 0x00, 0x00 };
buf2EP(0, status, 2, rq->wLength, 0);
}
break;
case USB_RQ_GET_DESCRIPTOR:
switch (rq->wValue >> 8)
{
case REPORT_DESCRIPTOR:
{
// HID 1.1 : 7.1.1 Get_Descriptor request. wIndex is the interface number.
//
if (rq->wIndex > g_params->n_hid_interfaces) {
unhandled = 1;
break;
}
longDescriptorHelper(g_params->hid_params[rq->wIndex].reportdesc,
g_params->hid_params[rq->wIndex].reportdesc_len,
rq->wLength,
g_params->flags & USB_PARAM_FLAG_REPORTDESC_PROGMEM);
}
break;
default:
unhandled = 1;
}
break;
default:
unhandled = 1;
}
break;
case USB_RQT_CLASS:
switch (rq->bRequest)
{
case HID_CLSRQ_GET_REPORT:
{
// HID 1.1 : 7.2.1 Get_Report request. wIndex is the interface number.
if (rq->wIndex > g_params->n_hid_interfaces)
break;
if (g_params->hid_params[rq->wIndex].getReport) {
const unsigned char *data;
uint16_t len;
len = g_params->hid_params[rq->wIndex].getReport(
g_params->hid_params[rq->wIndex].ctx,
rq, &data);
if (len) {
buf2EP(0, data, len, rq->wLength, 0);
}
} else {
// Treat as not-supported (i.e. STALL endpoint)
unhandled = 1;
}
}
break;
default:
unhandled = 1;
}
break;
default:
unhandled = 1;
}
break;
case USB_RQT_RECIPIENT_ENDPOINT:
switch (rq->bRequest)
{
case USB_RQ_GET_STATUS:
{ // 9.4.5 Get Status, Figure 0-6
unsigned char status[2] = { 0x00, 0x00 };
// status[0] & 0x01 : Halt
buf2EP(0, status, 2, rq->wLength, 0);
}
break;
default:
unhandled = 1;
}
break;
case USB_RQT_RECIPIENT_OTHER:
default:
unhandled = 1;
}
if (!unhandled)
{
// Handle transmission now
UEINTX &= ~(1<<TXINI);
while (1)
{
if (UEINTX & (1<<TXINI)) {
UEINTX &= ~(1<<TXINI);
}
if (UEINTX & (1<<RXOUTI)) {
break;
}
}
UEINTX &= ~(1<<RXOUTI); // ACK
}
} // IS DEVICE-TO-HOST
if (unhandled) {
printf_P(PSTR("t: %02x, rq: 0x%02x, val: %04x\r\n"), rq->bmRequestType, rq->bRequest, rq->wValue);
UECONX |= (1<<STALLRQ);
}
}
static void handleDataPacket(const struct usb_request *rq, uint8_t *dat, uint16_t len)
{
uint16_t i;
if ((rq->bmRequestType & (USB_RQT_TYPE_MASK)) == USB_RQT_CLASS) {
// TODO : Cechk for HID_CLSRQ_SET_REPORT in rq->bRequest
// HID 1.1 : 7.2.2 Set_Report request. wIndex is the interface number.
if (rq->wIndex > g_params->n_hid_interfaces)
return;
if (g_params->hid_params[rq->wIndex].setReport) {
if (g_params->hid_params[rq->wIndex].setReport(
g_params->hid_params[rq->wIndex].ctx,
rq, dat, len)) {
UECONX |= (1<<STALLRQ);
} else {
// xmit status
UEINTX &= ~(1<<TXINI);
}
return;
}
}
printf_P(PSTR("Unhandled control write [%d] : "), len);
for (i=0; i<len; i++) {
printf_P(PSTR("%02X "), dat[i]);
}
printf_P(PSTR("\r\n"));
}
// Device interrupt
ISR(USB_GEN_vect)
{
uint8_t i;
i = UDINT;
if (i & (1<<SUSPI)) {
UDINT &= ~(1<<SUSPI);
g_usb_suspend = 1;
UDIEN |= (1<<WAKEUPE);
#ifdef VERBOSE
printf_P(PSTR("SUSPI\r\n"));
#endif
// CPU could now be put in low power mode. Later,
// WAKEUPI would wake it up.
}
// this interrupt is to wakeup the cpu from sleep mode.
if (i & (1<<WAKEUPI)) {
UDINT &= ~(1<<WAKEUPE);
if (g_usb_suspend) {
g_usb_suspend = 0;
#ifdef VERBOSE
printf_P(PSTR("WAKEUPI\r\n"));
#endif
UDIEN &= ~(1<<WAKEUPE); // woke up. Not needed anymore.
}
}
if (i & (1<<EORSTI)) {
#ifdef VERBOSE
printf_P(PSTR("EORSTI\r\n"));
#endif
g_usb_suspend = 0;
setupEndpoints();
UDINT &= ~(1<<EORSTI);
}
if (i & (1<<SOFI)) {
UDINT &= ~(1<<SOFI);
#ifdef VERBOSE
printf_P(PSTR("SOFI\r\n"));
#endif
}
if (i & (1<<EORSMI)) {
UDINT &= ~(1<<EORSMI);
#ifdef VERBOSE
printf_P(PSTR("EORSMI\r\n"));
#endif
}
if (i & (1<<UPRSMI)) {
UDINT &= ~(1<<UPRSMI);
#ifdef VERBOSE
printf_P(PSTR("UPRSMI\r\n"));
#endif
}
}
static void handle_interrupt_xmit(uint8_t ep, void **interrupt_data, volatile int *interrupt_data_len)
{
uint8_t i;
UENUM = ep;
i = UEINTX;
if (i & (1<<TXINI)) {
if (*interrupt_data_len < 0) {
// If there's not already data waiting to be
// sent, disable the interrupt.
UEIENX &= ~(1<<TXINE);
} else {
UEINTX &= ~(1<<TXINI);
buf2EP(ep, (void*)*interrupt_data, *interrupt_data_len, *interrupt_data_len, 0);
*interrupt_data = NULL;
*interrupt_data_len = -1;
UEINTX &= ~(1<<FIFOCON);
}
}
}
// Endpoint interrupt
ISR(USB_COM_vect)
{
uint8_t ueint;
uint8_t i;
ueint = UEINT;
if (ueint & (1<<EPINT0)) {
UENUM = 0;
i = UEINTX;
if (i & (1<<RXSTPI)) {
// printf_P(PSTR("RXSTPI\r\n"));
readEP2buf(g_ep0_buf);
UEINTX &= ~(1<<RXSTPI);
handleSetupPacket((struct usb_request *)g_ep0_buf);
}
if (i & (1<<RXOUTI)) {
uint16_t len;
len = readEP2buf(g_ep0_buf);
UEINTX &= ~(1<<RXOUTI);
if (control_write_in_progress) {
// printf_P(PSTR("chunk: %d\r\n"), len);
if (control_write_len + len < CONTROL_WRITE_BUFSIZE) {
memcpy(control_write_buf + control_write_len, g_ep0_buf, len);
control_write_len += len;
}
}
}
if (i & (1<<NAKINI)) {
UEINTX &= ~(1<<NAKINI);
if (control_write_in_progress) {
// printf_P(PSTR("end. total: %d\n"), control_write_len);
handleDataPacket(&control_write_rq, control_write_buf, control_write_len);
control_write_in_progress = 0;
}
}
}
if (ueint & (1<<EPINT1)) {
handle_interrupt_xmit(1, &interrupt_data, &interrupt_data_len);
}
if (ueint & (1<<EPINT2)) {
handle_interrupt_xmit(2, &interrupt_data2, &interrupt_data_len2);
}
if (ueint & (1<<EPINT3)) {
handle_interrupt_xmit(3, &interrupt_data3, &interrupt_data_len3);
}
#if 0
if (i & (1<<RXOUTI)) {
UEINTX &= ~(1<<RXOUTI);
printf_P(PSTR("RXOUTI\r\n"));
}
#endif
}
char usb_interruptReady_ep3(void)
{
return interrupt_data_len3 == -1;
}
void usb_interruptSend_ep3(void *data, int len)
{
uint8_t sreg = SREG;
while (interrupt_data_len3 != -1) { }
cli();
interrupt_data3 = data;
interrupt_data_len3 = len;
UENUM = 3;
UEIENX |= (1<<TXINE);
SREG = sreg;
}
char usb_interruptReady_ep2(void)
{
return interrupt_data_len2 == -1;
}
void usb_interruptSend_ep2(void *data, int len)
{
uint8_t sreg = SREG;
while (interrupt_data_len2 != -1) { }
cli();
interrupt_data2 = data;
interrupt_data_len2 = len;
UENUM = 2;
UEIENX |= (1<<TXINE);
SREG = sreg;
}
char usb_interruptReady_ep1(void)
{
return interrupt_data_len == -1;
}
void usb_interruptSend_ep1(void *data, int len)
{
uint8_t sreg = SREG;
while (interrupt_data_len != -1) { }
cli();
interrupt_data = data;
interrupt_data_len = len;
UENUM = 1;
UEIENX |= (1<<TXINE);
SREG = sreg;
}
void usb_shutdown(void)
{
UDCON |= (1<<DETACH);
// Disable interrupts
UDIEN = 0;
USBCON &= ~(1<<USBE);
USBCON |= (1<<FRZCLK); // initial value
#ifdef UHWCON
UHWCON &= ~(1<<UVREGE); // Disable USB pad regulator
#endif
}
#define STATE_WAIT_VBUS 0
#define STATE_ATTACHED 1
static unsigned char usb_state;
void usb_doTasks(void)
{
switch (usb_state)
{
default:
usb_state = STATE_WAIT_VBUS;
case STATE_WAIT_VBUS:
#ifdef USBSTA
if (USBSTA & (1<<VBUS)) {
#endif
#ifdef VERBOSE
printf_P(PSTR("ATTACH\r\n"));
#endif
UDCON &= ~(1<<DETACH); // clear DETACH bit
usb_state = STATE_ATTACHED;
#ifdef USBSTA
}
#endif
break;
case STATE_ATTACHED:
break;
}
}
#if defined(__AVR_ATmega32U2__) || defined(__AVR_ATmega32U4__)
/* Atmega32u2 datasheet 8.11.6, PLLCSR.
* But register summary says PLLP0... */
#ifndef PINDIV
#define PINDIV 2
#endif
static void pll_init(void)
{
#if F_CPU==8000000L
PLLCSR = 0;
#elif F_CPU==16000000L
PLLCSR = (1<<PINDIV);
#else
#error Unsupported clock frequency
#endif
PLLCSR |= (1<<PLLE);
while (!(PLLCSR&(1<<PLOCK))) {
// wait for PLL lock
}
}
#else
static void pll_init(void)
{
#if F_CPU==8000000L
// The PLL generates a clock that is 24x a nominal 2MHz input.
// Hence, we need to divide by 4 the external 8MHz crystal
// frequency.
PLLCSR = (1<<PLLP1)|(1<<PLLP0);
#elif F_CPU==16000000L
// The PLL generates a clock that is 24x a nominal 2MHz input.
// Hence, we need to divide by 8 the external 16MHz crystal
// frequency.
PLLCSR = (1<<PLLP2)|(1<<PLLP0);
#else
#error Unsupported clock frequency
#endif
PLLCSR |= (1<<PLLE);
while (!(PLLCSR&(1<<PLOCK))) {
// wait for PLL lock
}
}
#endif
void usb_init(const struct usb_parameters *params)
{
// Initialize the registers to the default values
// from the datasheet. The bootloader that sometimes
// runs before we get here (when doing updates) leaves
// different values...
#ifdef UHWCON
UHWCON = 0x80;
#endif
USBCON = 0x20;
UDCON = 0x01;
UDIEN = 0x00;
UDADDR = 0x00;
g_params = params;
// Set some initial values
USBCON &= ~(1<<USBE);
USBCON |= (1<<FRZCLK); // initial value
#ifdef UHWCON
UHWCON |= (1<<UVREGE); // Enable USB pad regulator
#if defined(UIDE) && defined(UIMOD)
UHWCON &= ~(1<<UIDE);
UHWCON |= (1<UIMOD);
#endif
#endif
#ifdef UPOE
UPOE = 0; // Disable direct drive of USB pins
#endif
#ifdef REGCR
REGCR = 0; // Enable the regulator
#endif
pll_init();
USBCON |= (1<<USBE);
USBCON &= ~(1<<FRZCLK); // Unfreeze clock
#ifdef OTGPADE
USBCON |= (1<<OTGPADE);
#endif
#ifdef LSM
// Select full speed mode
UDCON &= (1<<LSM);
#endif
setupEndpoints();
UDINT &= ~(1<<SUSPI);
UDIEN = (1<<SUSPE) | (1<<EORSTE) |/* (1<<SOFE) |*/ (1<<WAKEUPE) | (1<<EORSME) | (1<<UPRSME);
}