#include #include #include #include "gcn64lib.h" #include "gc2n64_adapter.h" #include "hexdump.h" #include "ihex.h" #include "delay.h" int gc2n64_adapter_echotest(gcn64_hdl_t hdl, int channel, int verbose) { unsigned char cmd[30]; unsigned char buf[30]; int i, n; cmd[0] = 'R'; cmd[1] = 0x00; // echo for (i=0; i<28; i++) { cmd[i+2] = 'A'+i; } n = gcn64lib_rawSiCommand(hdl, channel, cmd, sizeof(buf), buf, sizeof(buf)); if (n<0) { return n; } if (verbose) { if ((n != sizeof(buf)) || memcmp(cmd, buf, sizeof(buf))) { printf("Test failed\n"); printf(" Sent [%d]: ", (int)sizeof(cmd)); printHexBuf(cmd, sizeof(cmd)); printf("Received [%d]: ", n); printHexBuf(buf, n); return -1; } } return (n!= sizeof(buf)) || memcmp(cmd, buf, sizeof(buf)); } int gc2n64_adapter_getMapping(gcn64_hdl_t hdl, int channel, int id) { unsigned char buf[64]; unsigned char cmd[4]; int n; int mapping_size; cmd[0] = 'R'; cmd[1] = 0x02; // Get mapping cmd[2] = id; cmd[3] = 0; // chunk 0 (size) n = gcn64lib_rawSiCommand(hdl, channel, cmd, 4, buf, 4); if (n<0) return n; if (n == 1) { int i, pos; mapping_size = buf[0]; printf("Mapping %d size: %d\n", id, mapping_size); for (pos=0, i=0; posin_bootloader) { printf("gc_to_n64 adapter info: {\n"); printf("\tDefault mapping id: %d\n", inf->app.default_mapping_id); printf("\tDeadzone enabled: %d\n", inf->app.deadzone_enabled); printf("\tOld v1.5 conversion: %d\n", inf->app.old_v1_5_conversion); printf("\tFirmware version: %s\n", inf->app.version); } else { printf("gc_to_n64 adapter in bootloader mode: {\n"); printf("\tBootloader firmware version: %s\n", inf->bootldr.version); printf("\tMCU page size: %d bytes\n", inf->bootldr.mcu_page_size); printf("\tBootloader code start address: 0x%04x\n", inf->bootldr.bootloader_start_address); } printf("}\n"); } int gc2n64_adapter_getInfo(gcn64_hdl_t hdl, int channel, struct gc2n64_adapter_info *inf) { unsigned char buf[32]; int n; buf[0] = 'R'; buf[1] = 0x01; // Get device info n = gcn64lib_rawSiCommand(hdl, channel, buf, 2, buf, sizeof(buf)); if (n<0) return n; if (n > 0) { // On N64, when receiving an all 0xFF reply, catch it here. if (buf[0] == 0xff) return -1; if (!inf) return 0; inf->in_bootloader = buf[0]; if (!inf->in_bootloader) { inf->app.default_mapping_id = buf[2]; inf->app.deadzone_enabled = buf[3]; inf->app.old_v1_5_conversion = buf[4]; inf->app.version[sizeof(inf->app.version)-1]=0; strncpy(inf->app.version, (char*)buf+10, sizeof(inf->app.version)-1); } else { inf->bootldr.mcu_page_size = buf[1]; inf->bootldr.bootloader_start_address = buf[2] << 8 | buf[3]; inf->bootldr.version[sizeof(inf->bootldr.version)-1]=0; strncpy(inf->bootldr.version, (char*)buf+10, sizeof(inf->bootldr.version)-1); } } else { printf("No answer (old version?)\n"); return -1; } return 0; } int gc2n64_adapter_boot_isBusy(gcn64_hdl_t hdl, int channel) { unsigned char buf[64]; int n; buf[0] = 'R'; buf[1] = 0xf9; n = gcn64lib_rawSiCommand(hdl, channel, buf, 2, buf, 1); if (n<0) return n; if (n != 1) { return 2; // Busy inferred from lack of answer } if (buf[0] != 0x00) { return 1; // Busy } return 0; // Idle } int gc2n64_adapter_boot_waitNotBusy(gcn64_hdl_t hdl, int channel, int verbose) { char spinner[4] = { '|','/','-','\\' }; int busy, no_reply_count=0; int c=0; while ((busy = gc2n64_adapter_boot_isBusy(hdl, channel))) { if (busy < 0) { return -1; } if (busy == 2) { no_reply_count++; if (no_reply_count > 200) { fprintf(stderr, "Adapter answer timeout\n"); return -1; } } printf("%c\b", spinner[c%4]); fflush(stdout); c++; _delay_us(50000); } return 0; } int gc2n64_adapter_boot_eraseAll(gcn64_hdl_t hdl, int channel) { unsigned char buf[64]; int n; buf[0] = 'R'; buf[1] = 0xf0; n = gcn64lib_rawSiCommand(hdl, channel, buf, 2, buf, 1); if (n<0) return n; if (n != 1) { fprintf(stderr, "Invalid answer. %d bytes received.\n", n); return -1; } if (buf[0] != 0x00) { fprintf(stderr, "eraseAll request NACK!\n"); return -1; } return 0; } int gc2n64_adapter_boot_readBlock(gcn64_hdl_t hdl, int channel, unsigned int block_id, unsigned char dst[32]) { unsigned char buf[32]; int n; buf[0] = 'R'; buf[1] = 0xf1; buf[2] = block_id >> 8; buf[3] = block_id & 0xff; n = gcn64lib_rawSiCommand(hdl, channel, buf, 4, buf, sizeof(buf)); if (n<0) return n; if (n != 32) { fprintf(stderr, "Invalid answer\n"); return -1; } memcpy(dst, buf, 32); return 0; } int gc2n64_adapter_dumpFlash(gcn64_hdl_t hdl, int channel) { int i; unsigned char buf[0x10000]; struct gc2n64_adapter_info inf; i = gc2n64_adapter_getInfo(hdl, channel, &inf); if (i) return i; if (!inf.in_bootloader) { fprintf(stderr, "dumpFlash: Nnot in bootloader\n"); return -1; } // Atmega168 : 16K for (i=0; i<16*1024; i+= 32) { gc2n64_adapter_boot_readBlock(hdl, channel, i/32, buf + i); printf("0x%04x: ", i); printHexBuf(buf + i, 32); } return 0; } int gc2n64_adapter_enterBootloader(gcn64_hdl_t hdl, int channel) { unsigned char buf[4]; int n; int t = 1000; // > 100ms timeout /* The bootloader starts the application automatically if it is * installed. To prevent the application from being restarted right * away when are entering the bootloader, the bootloader waits * 50 ms at startup, and if it receives the 'enter bootloader' command * within this window, the application is not started. * * Also, contrary to the application, the bootloader actually answers * this command. So it doubles as a handshake to know the bootloader has * started and is ready to receive instructions. * * */ do { buf[0] = 'R'; buf[1] = 0xff; n = gcn64lib_rawSiCommand(hdl, channel, buf, 2, buf, sizeof(buf)); if (n<0) { return n; } if (buf[0] == 0xff && buf[1] == 0xff) { n = 0; } _delay_us(1000); t--; if (!t) { fprintf(stderr, "Timeout waiting for bootloader\n"); return -1; } } while(n==0); return 0; } int gc2n64_adapter_bootApplication(gcn64_hdl_t hdl, int channel) { unsigned char buf[2]; int n; buf[0] = 'R'; buf[1] = 0xfe; n = gcn64lib_rawSiCommand(hdl, channel, buf, 2, buf, 1); if (n<0) return n; if (n != 1) { fprintf(stderr, "boot application: Invalid answer\n"); return -1; } if (buf[0]) { fprintf(stderr, "Boot nack\n"); return -1; } return 0; } // Note: eraseAll needs to be performed first int gc2n64_adapter_sendFirmwareBlocks(gcn64_hdl_t hdl, int channel, unsigned char *firmware, int len) { unsigned char buf[64]; int i, block_id; int n; for (i=0; i> 8; buf[3] = block_id & 0xff; memcpy(buf + 4, firmware+i, 32); printf("Block %d / %d\r", block_id+1, len / 32); fflush(stdout); n = gcn64lib_rawSiCommand(hdl, channel, buf, 4 + 32, buf, 4); if (n<0) { fprintf(stderr, "\nRaw command failed\n"); return n; } if (n != 4) { fprintf(stderr, "\nInvalid upload block answer\n"); return -1; } // [0] ACK (should be 0x00) // [1] Need to poll? // [2] Block ID high // [3] Block ID low if (buf[0] != 0x00) { fprintf(stderr, "Busy\n"); return -1; } if (buf[1]) { if (gc2n64_adapter_boot_waitNotBusy(hdl, channel, 1)) { fprintf(stderr, "Error waiting not busy\n"); return -1; } } // printf("\n"); // printf("Block ID: 0x%04x\n", (buf[2]<<8) | buf[3]); } return 0; } int gc2n64_adapter_verifyFirmware(gcn64_hdl_t hdl, int channel, unsigned char *firmware, int len) { unsigned char buf[32]; int i; for (i=0; i= inf.bootldr.bootloader_start_address - 4) { fprintf(stderr, "No space for marker - application too large. Aborting\n"); return -1; } buf[inf.bootldr.bootloader_start_address - 4] = 0x12; buf[inf.bootldr.bootloader_start_address - 3] = 0x34; buf[inf.bootldr.bootloader_start_address - 2] = 0x56; buf[inf.bootldr.bootloader_start_address - 1] = 0x78; printf("step [5/7] : Write new firmware...\n"); // Note: We write up to the bootloader, even if the firmware was shorter (it usually is). // This is to make sure that the marker we placed at the end gets written. res = gc2n64_adapter_sendFirmwareBlocks(hdl, channel, buf, inf.bootldr.bootloader_start_address); if (res < 0) { return -1; } printf("step [6/7] : Verify firmware...\n"); res = gc2n64_adapter_verifyFirmware(hdl, channel, buf, inf.bootldr.bootloader_start_address); if (res < 0) { printf("Verify failed : Update failed\n"); return -1; } printf("step [7/7] : Launch new firmware.\n"); gc2n64_adapter_bootApplication(hdl, channel); err: free(buf); return ret; }