/*
* This file is modified by Ivan Maidanski
* This class represents a specific time in milliseconds since the epoch.
* The epoch is 1970, January 1 00:00:00.0000 UTC.
*
*
* The representations of the date fields are as follows:
* Date
is intended to reflect universal time coordinate (UTC),
* but this depends on the underlying host environment. Most operating systems
* don't handle the leap second, which occurs about once every year or
* so. The leap second is added to the last minute of the day on either
* the 30th of June or the 31st of December, creating a minute 61 seconds
* in length.
*
*
*
* Prior to JDK 1.1, this class was the sole class handling date and time
* related functionality. However, this particular solution was not
* amenable to internationalization. The new Calendar
* class should now be used to handle dates and times, with Date
* being used only for values in milliseconds since the epoch. The
* Calendar
class, and its concrete implementations, handle
* the interpretation of these values into minutes, hours, days, months
* and years. The formatting and parsing of dates is left to the
* DateFormat
class, which is able to handle the different
* types of date format which occur in different locales.
*
new GregorianCalendar(year+1900, month,
* day)
instead.
* @param year the difference between the required year and 1900.
* @param month the month as a value between 0 and 11.
* @param day the day as a value between 0 and 31.
*/
public Date(int year, int month, int day)
{
this(year, month, day, 0, 0, 0);
}
/**
* Creates a new Date Object representing the given time.
*
* @deprecated use new GregorianCalendar(year+1900, month,
* day, hour, min)
instead.
* @param year the difference between the required year and 1900.
* @param month the month as a value between 0 and 11.
* @param day the day as a value between 0 and 31.
* @param hour the hour as a value between 0 and 23, in 24-hour
* clock notation.
* @param min the minute as a value between 0 and 59.
*/
public Date(int year, int month, int day, int hour, int min)
{
this(year, month, day, hour, min, 0);
}
/**
* Creates a new Date Object representing the given time.
*
* @deprecated use new GregorianCalendar(year+1900, month,
* day, hour, min, sec)
instead.
* @param year the difference between the required year and 1900.
* @param month the month as a value between 0 and 11.
* @param day the day as a value between 0 and 31.
* @param hour the hour as a value between 0 and 23, in 24-hour
* clock notation.
* @param min the minute as a value between 0 and 59.
* @param sec the second as a value between 0 and 61 (with 60
* and 61 being leap seconds).
*/
public Date(int year, int month, int day, int hour, int min, int sec)
{
GregorianCalendar cal =
new GregorianCalendar(year + 1900, month, day, hour, min, sec);
time = cal.getTimeInMillis();
}
/**
* Creates a new Date from the given string representation. This
* does the same as new Date(Date.parse(s))
* @see #parse
* @deprecated use java.text.DateFormat.parse(s)
instead.
*/
public Date(String s)
{
time = parse(s);
}
/**
* Returns a copy of this Date
object.
*
* @return a copy, or null if the object couldn't be
* cloned.
* @see Object#clone()
*/
public Object clone()
{
try
{
return super.clone();
}
catch (CloneNotSupportedException ex)
{
return null;
}
}
/**
* Returns the number of milliseconds since the epoch
* specified by the given arguments. The arguments are
* interpreted relative to UTC rather than the local
* time zone.
*
* @deprecated Use Calendar
with a UTC
* TimeZone
instead.
* @param year the difference between the required year and 1900.
* @param month the month as a value between 0 and 11.
* @param date the day as a value between 0 and 31.
* @param hrs the hour as a value between 0 and 23, in 24-hour
* clock notation.
* @param min the minute as a value between 0 and 59.
* @param sec the second as a value between 0 and 61 (with 60
* and 61 being leap seconds).
* @return the time in milliseconds since the epoch.
*/
public static long UTC(int year, int month, int date,
int hrs, int min, int sec)
{
GregorianCalendar cal =
new GregorianCalendar(year + 1900, month, date, hrs, min, sec);
cal.set(Calendar.ZONE_OFFSET, 0);
cal.set(Calendar.DST_OFFSET, 0);
return cal.getTimeInMillis();
}
/**
* Gets the time represented by this object.
*
* @return the time in milliseconds since the epoch.
*/
public long getTime()
{
return time;
}
/**
* Returns the number of minutes offset used with UTC to give the time
* represented by this object in the current time zone. The date information
* from this object is also used to determine whether or not daylight savings
* time is in effect. For example, the offset for the UK would be 0 if the
* month of the date object was January, and 1 if the month was August.
*
* @deprecated use
* Calendar.get(Calendar.ZONE_OFFSET)+Calendar.get(Calendar.DST_OFFSET)
* instead.
* @return The time zone offset in minutes of the local time zone
* relative to UTC. The time represented by this object is used to
* determine if we should use daylight savings.
*/
public int getTimezoneOffset()
{
Calendar cal = Calendar.getInstance();
cal.setTimeInMillis(time);
return - (cal.get(Calendar.ZONE_OFFSET)
+ cal.get(Calendar.DST_OFFSET)) / (60 * 1000);
}
/**
* Sets the time which this object should represent.
*
* @param time the time in milliseconds since the epoch.
*/
public void setTime(long time)
{
this.time = time;
}
/**
* Tests if this date is after the specified date.
*
* @param when the other date
* @return true, if the date represented by this object is
* strictly later than the time represented by when.
*/
public boolean after(Date when)
{
return time > when.time;
}
/**
* Tests if this date is before the specified date.
*
* @param when the other date
* @return true, if the date represented by when is strictly later
* than the time represented by this object.
*/
public boolean before(Date when)
{
return time < when.time;
}
/**
* Compares two dates for equality.
*
* @param obj the object to compare.
* @return true, if obj is a Date object and the time represented
* by obj is exactly the same as the time represented by this
* object.
*/
public boolean equals(Object obj)
{
return (obj instanceof Date && time == ((Date) obj).time);
}
/**
* Compares two dates.
*
* @param when the other date.
* @return 0, if the date represented
* by obj is exactly the same as the time represented by this
* object, a negative if this Date is before the other Date, and
* a positive value otherwise.
*/
public int compareTo(Date when)
{
return (time < when.time) ? -1 : (time == when.time) ? 0 : 1;
}
/**
* Compares this Date to another object. This behaves like
* compareTo(Date)
, but it takes a generic object
* and throws a ClassCastException
if obj is
* not a Date
.
*
* @param obj the other date.
* @return 0, if the date represented
* by obj is exactly the same as the time represented by this
* object, a negative if this Date is before the other Date, and
* a positive value otherwise.
* @exception ClassCastException if obj is not of type Date.
*/
public int compareTo(Object obj)
{
return compareTo((Date) obj);
}
/**
* Computes the hash code of this Date
as the
* XOR of the most significant and the least significant
* 32 bits of the 64 bit milliseconds value.
*
* @return the hash code.
*/
public int hashCode()
{
return (int) time ^ (int) (time >>> 32);
}
/**
* * Returns a string representation of this date using * the following date format: *
*
* day mon dd hh:mm:ss zz yyyy
*
where the fields used here are: *
day
-- the day of the week
* (Sunday through to Saturday).
* mon
-- the month (Jan to Dec).
* dd
-- the day of the month
* as two decimal digits (01 to 31).
* hh
-- the hour of the day
* as two decimal digits in 24-hour clock notation
* (01 to 23).
* mm
-- the minute of the day
* as two decimal digits (01 to 59).
* ss
-- the second of the day
* as two decimal digits (01 to 61).
* zz
-- the time zone information if available.
* The possible time zones used include the abbreviations
* recognised by parse()
(e.g. GMT, CET, etc.)
* and may reflect the fact that daylight savings time is in
* effect. The empty string is used if there is no time zone
* information.
* yyyy
-- the year as four decimal digits.
*
* The DateFormat
class should now be
* preferred over using this method.
*
Date
object.
*
* @deprecated Use DateFormat.format(Date)
* @return A locale-dependent string representation.
* @see #parse(String)
* @see DateFormat
*/
public String toLocaleString()
{
return DateFormat.getDateTimeInstance().format(this);
}
/**
*
* Returns a string representation of this Date
* object using GMT rather than the local timezone.
* The following date format is used:
*
* d mon yyyy hh:mm:ss GMT
*
where the fields used here are: *
d
-- the day of the month
* as one or two decimal digits (1 to 31).
* mon
-- the month (Jan to Dec).
* yyyy
-- the year as four decimal digits.
* hh
-- the hour of the day
* as two decimal digits in 24-hour clock notation
* (01 to 23).
* mm
-- the minute of the day
* as two decimal digits (01 to 59).
* ss
-- the second of the day
* as two decimal digits (01 to 61).
* GMT
-- the literal string "GMT"
* indicating Greenwich Mean Time as opposed to
* the local timezone.
*
* Parses a String and returns the time, in milliseconds since the
* epoch, it represents. Most syntaxes are handled, including
* the IETF date standard "day, dd mon yyyy hh:mm:ss zz" (see
* toString()
for definitions of these fields).
* Standard U.S. time zone abbreviations are recognised, in
* addition to time zone offsets in positive or negative minutes.
* If a time zone is specified, the specified time is assumed to
* be in UTC and the appropriate conversion is applied, following
* parsing, to convert this to the local time zone. If no zone
* is specified, the time is assumed to already be in the local
* time zone.
*
* The method parses the string progressively from left to right.
* At the end of the parsing process, either a time is returned
* or an IllegalArgumentException
is thrown to signify
* failure. The ASCII characters A-Z, a-z, 0-9, and ',', '+', '-',
* ':' and '/' are the only characters permitted within the string,
* besides whitespace and characters enclosed within parantheses
* '(' and ')'.
*
* A sequence of consecutive digits are recognised as a number, * and interpreted as follows: *
Date
class is initialised.. Given a century,
* x, the year is assumed to be within the range x - 80 to x + 19. The value
* itself is then used as a match against the two last digits of one of these
* years. For example, take x to be 2004. A two-digit year is assumed to fall
* within the range x - 80 (1924) and x + 19 (2023). Thus, any intepreted value
* between 0 and 23 is assumed to be 2000 to 2023 and values between 24 and 99
* are taken as being 1924 to 1999. This only applies for the case of 2004.
* With a different year, the values will be interpreted differently. 2005
* will used 0 to 24 as 2000 to 2024 and 25 to 99 as 1925 to 1999, for example.
* This behaviour differs from that of SimpleDateFormat
and is
* time-dependent (a two-digit year will be interpreted differently depending
* on the time the code is run).
* * A sequence of consecutive alphabetic characters is recognised as a word, * and interpreted as follows, in a case-insentive fashion: *
Date
object and 1900.
*
* @return the year minus 1900 represented by this date object.
* @deprecated Use Calendar instead of Date, and use get(Calendar.YEAR)
* instead. Note the 1900 difference in the year.
* @see Calendar
* @see #setYear(int)
*/
public int getYear()
{
Calendar cal = Calendar.getInstance();
cal.setTimeInMillis(time);
return cal.get(Calendar.YEAR) - 1900;
}
/**
* Sets the year to the specified year, plus 1900. The other
* fields are only altered as required to match the same date
* and time in the new year. Usually, this will mean that
* the fields are not changed at all, but in the case of
* a leap day or leap second, the fields will change in
* relation to the existence of such an event in the new year.
* For example, if the date specifies February the 29th, 2000,
* then this will become March the 1st if the year is changed
* to 2001, as 2001 is not a leap year. Similarly, a seconds
* value of 60 or 61 may result in the seconds becoming 0 and
* the minute increasing by 1, if the new time does not include
* a leap second.
*
* @param year the year minus 1900.
* @deprecated Use Calendar instead of Date, and use
* set(Calendar.YEAR, year) instead. Note about the 1900
* difference in year.
* @see #getYear()
* @see Calendar
*/
public void setYear(int year)
{
Calendar cal = Calendar.getInstance();
cal.setTimeInMillis(time);
cal.set(Calendar.YEAR, 1900 + year);
time = cal.getTimeInMillis();
}
/**
* Returns the month represented by this Date
object,
* as a value between 0 (January) and 11 (December).
*
* @return the month represented by this date object (zero based).
* @deprecated Use Calendar instead of Date, and use get(Calendar.MONTH)
* instead.
* @see #setMonth(int)
* @see Calendar
*/
public int getMonth()
{
Calendar cal = Calendar.getInstance();
cal.setTimeInMillis(time);
return cal.get(Calendar.MONTH);
}
/**
* Sets the month to the given value. The other
* fields are only altered as necessary to match
* the same date and time in the new month. In most
* cases, the other fields won't change at all. However,
* in the case of a shorter month or a leap second, values
* may be adjusted. For example, if the day of the month
* is currently 31, and the month value is changed from
* January (0) to September (8), the date will become
* October the 1st, as September only has 30 days. Similarly,
* a seconds value of 60 or 61 (a leap second) may result
* in the seconds value being reset to 0 and the minutes
* value being incremented by 1, if the new time does
* not include a leap second.
*
* @param month the month, with a zero-based index
* from January.
* @deprecated Use Calendar instead of Date, and use
* set(Calendar.MONTH, month) instead.
* @see #getMonth()
* @see Calendar
*/
public void setMonth(int month)
{
Calendar cal = Calendar.getInstance();
cal.setTimeInMillis(time);
cal.set(Calendar.MONTH, month);
time = cal.getTimeInMillis();
}
/**
* Returns the day of the month of this Date
* object, as a value between 0 and 31.
*
* @return the day of month represented by this date object.
* @deprecated Use Calendar instead of Date, and use get(Calendar.DATE)
* instead.
* @see Calendar
* @see #setDate(int)
*/
public int getDate()
{
Calendar cal = Calendar.getInstance();
cal.setTimeInMillis(time);
return cal.get(Calendar.DATE);
}
/**
* Sets the date to the given value. The other
* fields are only altered as necessary to match
* the same date and time on the new day of the month. In most
* cases, the other fields won't change at all. However,
* in the case of a leap second or the day being out of
* the range of the current month, values
* may be adjusted. For example, if the day of the month
* is currently 30 and the month is June, a new day of the
* month value of 31 will cause the month to change to July,
* as June only has 30 days . Similarly,
* a seconds value of 60 or 61 (a leap second) may result
* in the seconds value being reset to 0 and the minutes
* value being incremented by 1, if the new time does
* not include a leap second.
*
* @param date the date.
* @deprecated Use Calendar instead of Date, and use
* set(Calendar.DATE, date) instead.
* @see Calendar
* @see #getDate()
*/
public void setDate(int date)
{
Calendar cal = Calendar.getInstance();
cal.setTimeInMillis(time);
cal.set(Calendar.DATE, date);
time = cal.getTimeInMillis();
}
/**
* Returns the day represented by this Date
* object as an integer between 0 (Sunday) and 6 (Saturday).
*
* @return the day represented by this date object.
* @deprecated Use Calendar instead of Date, and use get(Calendar.DAY_OF_WEEK)
* instead.
* @see Calendar
*/
public int getDay()
{
Calendar cal = Calendar.getInstance();
cal.setTimeInMillis(time);
// For Calendar, Sunday is 1. For Date, Sunday is 0.
return cal.get(Calendar.DAY_OF_WEEK) - 1;
}
/**
* Returns the hours represented by this Date
* object as an integer between 0 and 23.
*
* @return the hours represented by this date object.
* @deprecated Use Calendar instead of Date, and use get(Calendar.HOUR_OF_DAY)
* instead.
* @see Calendar
* @see #setHours(int)
*/
public int getHours()
{
Calendar cal = Calendar.getInstance();
cal.setTimeInMillis(time);
return cal.get(Calendar.HOUR_OF_DAY);
}
/**
* Sets the hours to the given value. The other
* fields are only altered as necessary to match
* the same date and time in the new hour. In most
* cases, the other fields won't change at all. However,
* in the case of a leap second, values
* may be adjusted. For example,
* a seconds value of 60 or 61 (a leap second) may result
* in the seconds value being reset to 0 and the minutes
* value being incremented by 1 if the new hour does
* not contain a leap second.
*
* @param hours the hours.
* @deprecated Use Calendar instead of Date, and use
* set(Calendar.HOUR_OF_DAY, hours) instead.
* @see Calendar
* @see #getHours()
*/
public void setHours(int hours)
{
Calendar cal = Calendar.getInstance();
cal.setTimeInMillis(time);
cal.set(Calendar.HOUR_OF_DAY, hours);
time = cal.getTimeInMillis();
}
/**
* Returns the number of minutes represented by the Date
* object, as an integer between 0 and 59.
*
* @return the minutes represented by this date object.
* @deprecated Use Calendar instead of Date, and use get(Calendar.MINUTE)
* instead.
* @see Calendar
* @see #setMinutes(int)
*/
public int getMinutes()
{
Calendar cal = Calendar.getInstance();
cal.setTimeInMillis(time);
return cal.get(Calendar.MINUTE);
}
/**
* Sets the minutes to the given value. The other
* fields are only altered as necessary to match
* the same date and time in the new minute. In most
* cases, the other fields won't change at all. However,
* in the case of a leap second, values
* may be adjusted. For example,
* a seconds value of 60 or 61 (a leap second) may result
* in the seconds value being reset to 0 and the minutes
* value being incremented by 1 if the new minute does
* not contain a leap second.
*
* @param minutes the minutes.
* @deprecated Use Calendar instead of Date, and use
* set(Calendar.MINUTE, minutes) instead.
* @see Calendar
* @see #getMinutes()
*/
public void setMinutes(int minutes)
{
Calendar cal = Calendar.getInstance();
cal.setTimeInMillis(time);
cal.set(Calendar.MINUTE, minutes);
time = cal.getTimeInMillis();
}
/**
* Returns the number of seconds represented by the Date
* object, as an integer between 0 and 61 (60 and 61 being leap seconds).
*
* @return the seconds represented by this date object.
* @deprecated Use Calendar instead of Date, and use get(Calendar.SECOND)
* instead.
* @see Calendar
* @see #setSeconds(int)
*/
public int getSeconds()
{
Calendar cal = Calendar.getInstance();
cal.setTimeInMillis(time);
return cal.get(Calendar.SECOND);
}
/**
* Sets the seconds to the given value. The other
* fields are only altered as necessary to match
* the same date and time in the new minute. In most
* cases, the other fields won't change at all. However,
* in the case of a leap second, values
* may be adjusted. For example, setting the
* seconds value to 60 or 61 (a leap second) may result
* in the seconds value being reset to 0 and the minutes
* value being incremented by 1, if the current time does
* not contain a leap second.
*
* @param seconds the seconds.
* @deprecated Use Calendar instead of Date, and use
* set(Calendar.SECOND, seconds) instead.
* @see Calendar
* @see #getSeconds()
*/
public void setSeconds(int seconds)
{
Calendar cal = Calendar.getInstance();
cal.setTimeInMillis(time);
cal.set(Calendar.SECOND, seconds);
time = cal.getTimeInMillis();
}
/**
* Deserializes a Date
object from an
* input stream, setting the time (in milliseconds
* since the epoch) to the long value read from the
* stream.
*
* @param input the input stream.
* @throws IOException if an I/O error occurs in the stream.
* @throws ClassNotFoundException if the class of the
* serialized object could not be found.
*/
private void readObject(ObjectInputStream input)
throws IOException, ClassNotFoundException
{
input.defaultReadObject();
time = input.readLong();
}
/**
* Serializes a Date
object to an output stream,
* storing the time (in milliseconds since the epoch) as a long
* value in the stream.
*
* @serialdata A long value representing the offset from the epoch
* in milliseconds. This is the same value that is returned by the
* method getTime().
* @param output the output stream.
* @throws IOException if an I/O error occurs in the stream.
*/
private void writeObject(ObjectOutputStream output)
throws IOException
{
output.defaultWriteObject();
output.writeLong(time);
}
}