mirror of
https://github.com/2003scape/deep-c-rsc.git
synced 2024-03-22 05:49:51 -04:00
1841 lines
75 KiB
Java
1841 lines
75 KiB
Java
![]() |
/*
|
||
|
* This file is modified by Ivan Maidanski <ivmai@ivmaisoft.com>
|
||
|
* Project name: JCGO-SUNAWT (http://www.ivmaisoft.com/jcgo/)
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* @(#)WPathGraphics.java 1.28 03/01/23
|
||
|
*
|
||
|
* Copyright 2003 Sun Microsystems, Inc. All rights reserved.
|
||
|
* SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
|
||
|
*/
|
||
|
|
||
|
package sun.awt.windows;
|
||
|
|
||
|
import java.awt.AlphaComposite;
|
||
|
import java.awt.BasicStroke;
|
||
|
import java.awt.Color;
|
||
|
import java.awt.Composite;
|
||
|
import java.awt.Font;
|
||
|
import java.awt.Graphics;
|
||
|
import java.awt.Graphics2D;
|
||
|
import java.awt.Image;
|
||
|
import java.awt.Paint;
|
||
|
import java.awt.Shape;
|
||
|
import java.awt.Stroke;
|
||
|
import java.awt.Transparency;
|
||
|
|
||
|
import java.awt.font.GlyphVector;
|
||
|
|
||
|
import java.awt.geom.AffineTransform;
|
||
|
import java.awt.geom.NoninvertibleTransformException;
|
||
|
import java.awt.geom.PathIterator;
|
||
|
import java.awt.geom.Point2D;
|
||
|
import java.awt.geom.Rectangle2D;
|
||
|
import java.awt.geom.Line2D;
|
||
|
|
||
|
import java.awt.image.BufferedImage;
|
||
|
import java.awt.image.BufferedImageOp;
|
||
|
import java.awt.image.ColorModel;
|
||
|
import java.awt.image.DataBuffer;
|
||
|
import java.awt.image.DataBufferInt;
|
||
|
import java.awt.image.ImageObserver;
|
||
|
import java.awt.image.IndexColorModel;
|
||
|
import java.awt.image.Raster;
|
||
|
import java.awt.image.RenderedImage;
|
||
|
import java.awt.image.SampleModel;
|
||
|
import java.awt.image.SinglePixelPackedSampleModel;
|
||
|
|
||
|
import java.awt.print.PageFormat;
|
||
|
import java.awt.print.Printable;
|
||
|
import java.awt.print.PrinterException;
|
||
|
import java.awt.print.PrinterJob;
|
||
|
|
||
|
import sun.awt.PlatformFont;
|
||
|
|
||
|
import sun.awt.image.ByteComponentRaster;
|
||
|
|
||
|
import sun.print.PathGraphics;
|
||
|
import sun.print.ProxyGraphics2D;
|
||
|
import sun.java2d.SunGraphicsEnvironment;
|
||
|
|
||
|
class WPathGraphics extends PathGraphics {
|
||
|
|
||
|
/**
|
||
|
* For a drawing application the initial user space
|
||
|
* resolution is 72dpi.
|
||
|
*/
|
||
|
private static final int DEFAULT_USER_RES = 72;
|
||
|
|
||
|
private static final float MIN_DEVICE_LINEWIDTH = 1.2f;
|
||
|
private static final float MAX_THINLINE_INCHES = 0.014f;
|
||
|
|
||
|
private Font lastFont;
|
||
|
private Font lastDeviceSizeFont;
|
||
|
private int lastAngle;
|
||
|
private float lastScaledFontSize;
|
||
|
private float lastAverageWidthScale;
|
||
|
|
||
|
WPathGraphics(Graphics2D graphics, PrinterJob printerJob,
|
||
|
Printable painter, PageFormat pageFormat, int pageIndex,
|
||
|
boolean canRedraw) {
|
||
|
super(graphics, printerJob, painter, pageFormat, pageIndex, canRedraw);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Creates a new <code>Graphics</code> object that is
|
||
|
* a copy of this <code>Graphics</code> object.
|
||
|
* @return a new graphics context that is a copy of
|
||
|
* this graphics context.
|
||
|
* @since JDK1.0
|
||
|
*/
|
||
|
public Graphics create() {
|
||
|
|
||
|
return new WPathGraphics((Graphics2D) getDelegate().create(),
|
||
|
getPrinterJob(),
|
||
|
getPrintable(),
|
||
|
getPageFormat(),
|
||
|
getPageIndex(),
|
||
|
canDoRedraws());
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Strokes the outline of a Shape using the settings of the current
|
||
|
* graphics state. The rendering attributes applied include the
|
||
|
* clip, transform, paint or color, composite and stroke attributes.
|
||
|
* @param s The shape to be drawn.
|
||
|
* @see #setStroke
|
||
|
* @see #setPaint
|
||
|
* @see java.awt.Graphics#setColor
|
||
|
* @see #transform
|
||
|
* @see #setTransform
|
||
|
* @see #clip
|
||
|
* @see #setClip
|
||
|
* @see #setComposite
|
||
|
*/
|
||
|
public void draw(Shape s) {
|
||
|
|
||
|
Stroke stroke = getStroke();
|
||
|
|
||
|
/* If the line being drawn is thinner than can be
|
||
|
* rendered, then change the line width, stroke
|
||
|
* the shape, and then set the line width back.
|
||
|
* We can only do this for BasicStroke's.
|
||
|
*/
|
||
|
if (stroke instanceof BasicStroke) {
|
||
|
BasicStroke lineStroke;
|
||
|
BasicStroke minLineStroke = null;
|
||
|
float deviceLineWidth;
|
||
|
float lineWidth;
|
||
|
AffineTransform deviceTransform;
|
||
|
Point2D.Float penSize;
|
||
|
|
||
|
/* Get the requested line width in user space.
|
||
|
*/
|
||
|
lineStroke = (BasicStroke) stroke;
|
||
|
lineWidth = lineStroke.getLineWidth();
|
||
|
penSize = new Point2D.Float(lineWidth, lineWidth);
|
||
|
|
||
|
/* Compute the line width in device coordinates.
|
||
|
* Work on a point in case there is asymetric scaling
|
||
|
* between user and device space.
|
||
|
* Take the absolute value in case there is negative
|
||
|
* scaling in effect.
|
||
|
*/
|
||
|
deviceTransform = getTransform();
|
||
|
deviceTransform.deltaTransform(penSize, penSize);
|
||
|
deviceLineWidth = Math.min(Math.abs(penSize.x),
|
||
|
Math.abs(penSize.y));
|
||
|
|
||
|
/* If the requested line is too thin then map our
|
||
|
* minimum line width back to user space and set
|
||
|
* a new BasicStroke.
|
||
|
*/
|
||
|
if (deviceLineWidth < MIN_DEVICE_LINEWIDTH) {
|
||
|
|
||
|
Point2D.Float minPenSize = new Point2D.Float(
|
||
|
MIN_DEVICE_LINEWIDTH,
|
||
|
MIN_DEVICE_LINEWIDTH);
|
||
|
|
||
|
try {
|
||
|
AffineTransform inverse;
|
||
|
float minLineWidth;
|
||
|
|
||
|
/* Convert the minimum line width from device
|
||
|
* space to user space.
|
||
|
*/
|
||
|
inverse = deviceTransform.createInverse();
|
||
|
inverse.deltaTransform(minPenSize, minPenSize);
|
||
|
|
||
|
minLineWidth = Math.max(Math.abs(minPenSize.x),
|
||
|
Math.abs(minPenSize.y));
|
||
|
|
||
|
/* Use all of the parameters from the current
|
||
|
* stroke but change the line width to our
|
||
|
* calculated minimum.
|
||
|
*/
|
||
|
minLineStroke = new BasicStroke(minLineWidth,
|
||
|
lineStroke.getEndCap(),
|
||
|
lineStroke.getLineJoin(),
|
||
|
lineStroke.getMiterLimit(),
|
||
|
lineStroke.getDashArray(),
|
||
|
lineStroke.getDashPhase());
|
||
|
setStroke(minLineStroke);
|
||
|
|
||
|
} catch (NoninvertibleTransformException e) {
|
||
|
/* If we can't invert the matrix there is something
|
||
|
* very wrong so don't worry about the minor matter
|
||
|
* of a minimum line width.
|
||
|
*/
|
||
|
}
|
||
|
}
|
||
|
|
||
|
super.draw(s);
|
||
|
|
||
|
/* If we changed the stroke, put back the old
|
||
|
* stroke in order to maintain a minimum line
|
||
|
* width.
|
||
|
*/
|
||
|
if (minLineStroke != null) {
|
||
|
setStroke(lineStroke);
|
||
|
}
|
||
|
|
||
|
/* The stroke in effect was not a BasicStroke so we
|
||
|
* will not try to enforce a minimum line width.
|
||
|
*/
|
||
|
} else {
|
||
|
super.draw(s);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Draws the text given by the specified string, using this
|
||
|
* graphics context's current font and color. The baseline of the
|
||
|
* first character is at position (<i>x</i>, <i>y</i>) in this
|
||
|
* graphics context's coordinate system.
|
||
|
* @param str the string to be drawn.
|
||
|
* @param x the <i>x</i> coordinate.
|
||
|
* @param y the <i>y</i> coordinate.
|
||
|
* @see java.awt.Graphics#drawBytes
|
||
|
* @see java.awt.Graphics#drawChars
|
||
|
* @since JDK1.0
|
||
|
*/
|
||
|
public void drawString(String str, int x, int y) {
|
||
|
drawString(str, (float) x, (float) y);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Renders the text specified by the specified <code>String</code>,
|
||
|
* using the current <code>Font</code> and <code>Paint</code> attributes
|
||
|
* in the <code>Graphics2D</code> context.
|
||
|
* The baseline of the first character is at position
|
||
|
* (<i>x</i>, <i>y</i>) in the User Space.
|
||
|
* The rendering attributes applied include the <code>Clip</code>,
|
||
|
* <code>Transform</code>, <code>Paint</code>, <code>Font</code> and
|
||
|
* <code>Composite</code> attributes. For characters in script systems
|
||
|
* such as Hebrew and Arabic, the glyphs can be rendered from right to
|
||
|
* left, in which case the coordinate supplied is the location of the
|
||
|
* leftmost character on the baseline.
|
||
|
* @param s the <code>String</code> to be rendered
|
||
|
* @param x, y the coordinates where the <code>String</code>
|
||
|
* should be rendered
|
||
|
* @see #setPaint
|
||
|
* @see java.awt.Graphics#setColor
|
||
|
* @see java.awt.Graphics#setFont
|
||
|
* @see #setTransform
|
||
|
* @see #setComposite
|
||
|
* @see #setClip
|
||
|
*/
|
||
|
public void drawString(String str, float x, float y) {
|
||
|
boolean drawnWithGDI = false;
|
||
|
|
||
|
AffineTransform deviceTransform = getTransform();
|
||
|
AffineTransform fontTransform = new AffineTransform(deviceTransform);
|
||
|
fontTransform.concatenate(getFont().getTransform());
|
||
|
int transformType = fontTransform.getType();
|
||
|
|
||
|
/* Use GDI for the text if the graphics transform is something
|
||
|
* for which we can obtain a suitable GDI font.
|
||
|
* A flip or shearing transform on the graphics or a transform
|
||
|
* on the font force us to decompose the text into a shape.
|
||
|
*/
|
||
|
boolean directToGDI = ((transformType !=
|
||
|
AffineTransform.TYPE_GENERAL_TRANSFORM)
|
||
|
&& ((transformType & AffineTransform.TYPE_FLIP)
|
||
|
== 0));
|
||
|
|
||
|
boolean shapingNeeded = stringNeedsShaping(str);
|
||
|
|
||
|
if (!WPrinterJob.shapeTextProp && directToGDI && !shapingNeeded) {
|
||
|
/* Compute the starting position of the string in
|
||
|
* device space.
|
||
|
*/
|
||
|
Point2D.Float pos = new Point2D.Float(x, y);
|
||
|
deviceTransform.transform(pos, pos);
|
||
|
|
||
|
/* Get the font size in device coordinates.
|
||
|
* Because this code only supports uniformly scaled
|
||
|
* device transforms, the fontSize must be equal in the
|
||
|
* x and y directions.
|
||
|
*/
|
||
|
Font currentFont = getFont();
|
||
|
float fontSize = currentFont.getSize2D();
|
||
|
|
||
|
Point2D.Double pty = new Point2D.Double(0.0, 1.0);
|
||
|
fontTransform.deltaTransform(pty, pty);
|
||
|
double scaleFactorY = Math.sqrt(pty.x*pty.x+pty.y*pty.y);
|
||
|
float scaledFontSizeY = (float)(fontSize * scaleFactorY);
|
||
|
|
||
|
Point2D.Double pt = new Point2D.Double(1.0, 0.0);
|
||
|
fontTransform.deltaTransform(pt, pt);
|
||
|
double scaleFactorX = Math.sqrt(pt.x*pt.x+pt.y*pt.y);
|
||
|
float scaledFontSizeX = (float)(fontSize * scaleFactorX);
|
||
|
|
||
|
float awScale =(float)(scaleFactorX/scaleFactorY);
|
||
|
/* don't let rounding errors be interpreted as non-uniform scale */
|
||
|
if (awScale > 0.999f && awScale < 1.001f) {
|
||
|
awScale = 1.0f;
|
||
|
}
|
||
|
|
||
|
/* Get the rotation in 1/10'ths degree (as needed by Windows)
|
||
|
* so that GDI can draw the text rotated.
|
||
|
* This calculation is only valid for a uniform scale, no shearing.
|
||
|
*/
|
||
|
double angle = Math.toDegrees(Math.atan2(pt.y, pt.x));
|
||
|
if (angle < 0.0) {
|
||
|
angle+= 360.0;
|
||
|
}
|
||
|
/* Windows specifies the rotation anti-clockwise from the x-axis
|
||
|
* of the device, 2D specifies +ve rotation towards the y-axis
|
||
|
* Since the 2D y-axis runs from top-to-bottom, windows angle of
|
||
|
* rotation here is opposite than 2D's, so the rotation needed
|
||
|
* needs to be recalculated in the opposite direction.
|
||
|
*/
|
||
|
if (angle != 0.0) {
|
||
|
angle = 360.0 - angle;
|
||
|
}
|
||
|
int iangle = (int)Math.round(angle * 10.0);
|
||
|
|
||
|
/* If the last font used is identical to the current font
|
||
|
* then we re-use the previous scaled Java font. This is
|
||
|
* not just a benefit for Java object re-use, it allows re-use
|
||
|
* of GDI fonts in the font peer of logical fonts and
|
||
|
* printer drivers will not need to keep setting the font
|
||
|
*/
|
||
|
Font deviceSizeFont;
|
||
|
if ((currentFont != null) && (lastFont != null) &&
|
||
|
(lastDeviceSizeFont != null) &&
|
||
|
(scaledFontSizeY == lastScaledFontSize) &&
|
||
|
(awScale == lastAverageWidthScale) &&
|
||
|
currentFont.equals(lastFont) && (iangle == lastAngle)) {
|
||
|
deviceSizeFont = lastDeviceSizeFont;
|
||
|
} else {
|
||
|
deviceSizeFont = currentFont.deriveFont(scaledFontSizeY);
|
||
|
lastAngle = iangle;
|
||
|
lastScaledFontSize = scaledFontSizeY;
|
||
|
lastAverageWidthScale = awScale;
|
||
|
lastDeviceSizeFont = deviceSizeFont;
|
||
|
lastFont = currentFont;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If there is a mapping from the java font to the GDI
|
||
|
* font then we can draw the text with GDI. If there is
|
||
|
* no such mapping then setFont will return false and
|
||
|
* we'll decompose the text into a Shape.
|
||
|
*
|
||
|
*/
|
||
|
WPrinterJob wPrinterJob = (WPrinterJob) getPrinterJob();
|
||
|
boolean gotLogicalFont = false;
|
||
|
boolean gotPhysicalFont =
|
||
|
wPrinterJob.setFont(deviceSizeFont, iangle, awScale);
|
||
|
if (!gotPhysicalFont &&
|
||
|
SunGraphicsEnvironment.isLogicalFont(deviceSizeFont)) {
|
||
|
gotLogicalFont =
|
||
|
wPrinterJob.setLogicalFont(deviceSizeFont,
|
||
|
iangle, awScale);
|
||
|
|
||
|
if (gotLogicalFont) {
|
||
|
try {
|
||
|
/* check all chars in string can be converted */
|
||
|
if (((PlatformFont)deviceSizeFont.getPeer()).
|
||
|
makeMultiCharsetString(str, false) == null)
|
||
|
{
|
||
|
gotLogicalFont = false;
|
||
|
}
|
||
|
} catch (Exception e) {
|
||
|
gotLogicalFont = false;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
if (gotPhysicalFont || gotLogicalFont) {
|
||
|
|
||
|
/* Set the text color.
|
||
|
* We should not be in this shape printing path
|
||
|
* if the application is drawing with non-solid
|
||
|
* colors. We should be in the raster path. Because
|
||
|
* we are here in the shape path, the cast of the
|
||
|
* paint to a Color should be fine.
|
||
|
*/
|
||
|
try {
|
||
|
wPrinterJob.setTextColor( (Color) getPaint());
|
||
|
} catch (ClassCastException e) {
|
||
|
throw new IllegalArgumentException(
|
||
|
"Expected a Color instance");
|
||
|
}
|
||
|
|
||
|
if (getClip() != null) {
|
||
|
deviceClip(getClip().getPathIterator(deviceTransform));
|
||
|
}
|
||
|
|
||
|
/* Let GDI draw the text by positioning each glyph
|
||
|
* as calculated by windows.
|
||
|
* REMIND: as per eval of bug 4271596, we can't use T2K
|
||
|
* to calculate the glyph advances
|
||
|
*/
|
||
|
wPrinterJob.textOut(str, pos.x, pos.y,
|
||
|
(gotLogicalFont ? deviceSizeFont : null));
|
||
|
drawnWithGDI = true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* The text could not be converted directly to GDI text
|
||
|
* calls so decompose the text into a shape.
|
||
|
*/
|
||
|
if (drawnWithGDI == false) {
|
||
|
super.drawString(str, x, y);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* GDI doesn't handle shaping or BIDI consistently with on-screen cases
|
||
|
* and TextLayout, so we will skip GDI text for Arabic & Hebrew.
|
||
|
* Results should then be correct for those locales.
|
||
|
*/
|
||
|
|
||
|
private boolean stringNeedsShaping(String s) {
|
||
|
boolean shapingNeeded = false;
|
||
|
|
||
|
char[] chars = s.toCharArray();
|
||
|
char c;
|
||
|
|
||
|
for (int i=0; i<chars.length;i++) {
|
||
|
c = chars[i];
|
||
|
|
||
|
if ((c & 0xfe00) == 0) {
|
||
|
continue; // if roman assume no shaping, BIDI
|
||
|
}
|
||
|
if ((c >= 0x0590) && (c <= 0x05ff)) { // Hebrew
|
||
|
shapingNeeded = true;
|
||
|
break;
|
||
|
}
|
||
|
if ((c >= 0x0600) && (c <= 0x06ff)) { // Arabic
|
||
|
shapingNeeded = true;
|
||
|
break;
|
||
|
}
|
||
|
if ((c >= 0x202a) && (c <= 0x202e)) { // directional control
|
||
|
shapingNeeded = true;
|
||
|
break;
|
||
|
}
|
||
|
if ((c >= 0x206a) && (c <= 0x206f)) { // directional control
|
||
|
shapingNeeded = true;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
return shapingNeeded;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Draws as much of the specified image as is currently available.
|
||
|
* The image is drawn with its top-left corner at
|
||
|
* (<i>x</i>, <i>y</i>) in this graphics context's coordinate
|
||
|
* space. Transparent pixels in the image do not affect whatever
|
||
|
* pixels are already there.
|
||
|
* <p>
|
||
|
* This method returns immediately in all cases, even if the
|
||
|
* complete image has not yet been loaded, and it has not been dithered
|
||
|
* and converted for the current output device.
|
||
|
* <p>
|
||
|
* If the image has not yet been completely loaded, then
|
||
|
* <code>drawImage</code> returns <code>false</code>. As more of
|
||
|
* the image becomes available, the process that draws the image notifies
|
||
|
* the specified image observer.
|
||
|
* @param img the specified image to be drawn.
|
||
|
* @param x the <i>x</i> coordinate.
|
||
|
* @param y the <i>y</i> coordinate.
|
||
|
* @param observer object to be notified as more of
|
||
|
* the image is converted.
|
||
|
* @see java.awt.Image
|
||
|
* @see java.awt.image.ImageObserver
|
||
|
* @see java.awt.image.ImageObserver#imageUpdate(java.awt.Image, int, int, int, int, int)
|
||
|
* @since JDK1.0
|
||
|
*/
|
||
|
public boolean drawImage(Image img, int x, int y,
|
||
|
ImageObserver observer) {
|
||
|
|
||
|
return drawImage(img, x, y, null, observer);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Draws as much of the specified image as has already been scaled
|
||
|
* to fit inside the specified rectangle.
|
||
|
* <p>
|
||
|
* The image is drawn inside the specified rectangle of this
|
||
|
* graphics context's coordinate space, and is scaled if
|
||
|
* necessary. Transparent pixels do not affect whatever pixels
|
||
|
* are already there.
|
||
|
* <p>
|
||
|
* This method returns immediately in all cases, even if the
|
||
|
* entire image has not yet been scaled, dithered, and converted
|
||
|
* for the current output device.
|
||
|
* If the current output representation is not yet complete, then
|
||
|
* <code>drawImage</code> returns <code>false</code>. As more of
|
||
|
* the image becomes available, the process that draws the image notifies
|
||
|
* the image observer by calling its <code>imageUpdate</code> method.
|
||
|
* <p>
|
||
|
* A scaled version of an image will not necessarily be
|
||
|
* available immediately just because an unscaled version of the
|
||
|
* image has been constructed for this output device. Each size of
|
||
|
* the image may be cached separately and generated from the original
|
||
|
* data in a separate image production sequence.
|
||
|
* @param img the specified image to be drawn.
|
||
|
* @param x the <i>x</i> coordinate.
|
||
|
* @param y the <i>y</i> coordinate.
|
||
|
* @param width the width of the rectangle.
|
||
|
* @param height the height of the rectangle.
|
||
|
* @param observer object to be notified as more of
|
||
|
* the image is converted.
|
||
|
* @see java.awt.Image
|
||
|
* @see java.awt.image.ImageObserver
|
||
|
* @see java.awt.image.ImageObserver#imageUpdate(java.awt.Image, int, int, int, int, int)
|
||
|
* @since JDK1.0
|
||
|
*/
|
||
|
public boolean drawImage(Image img, int x, int y,
|
||
|
int width, int height,
|
||
|
ImageObserver observer) {
|
||
|
|
||
|
return drawImage(img, x, y, width, height, null, observer);
|
||
|
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Draws as much of the specified image as is currently available.
|
||
|
* The image is drawn with its top-left corner at
|
||
|
* (<i>x</i>, <i>y</i>) in this graphics context's coordinate
|
||
|
* space. Transparent pixels are drawn in the specified
|
||
|
* background color.
|
||
|
* <p>
|
||
|
* This operation is equivalent to filling a rectangle of the
|
||
|
* width and height of the specified image with the given color and then
|
||
|
* drawing the image on top of it, but possibly more efficient.
|
||
|
* <p>
|
||
|
* This method returns immediately in all cases, even if the
|
||
|
* complete image has not yet been loaded, and it has not been dithered
|
||
|
* and converted for the current output device.
|
||
|
* <p>
|
||
|
* If the image has not yet been completely loaded, then
|
||
|
* <code>drawImage</code> returns <code>false</code>. As more of
|
||
|
* the image becomes available, the process that draws the image notifies
|
||
|
* the specified image observer.
|
||
|
* @param img the specified image to be drawn.
|
||
|
* @param x the <i>x</i> coordinate.
|
||
|
* @param y the <i>y</i> coordinate.
|
||
|
* @param bgcolor the background color to paint under the
|
||
|
* non-opaque portions of the image.
|
||
|
* In this WPathGraphics implementation,
|
||
|
* this parameter can be null in which
|
||
|
* case that background is made a transparent
|
||
|
* white.
|
||
|
* @param observer object to be notified as more of
|
||
|
* the image is converted.
|
||
|
* @see java.awt.Image
|
||
|
* @see java.awt.image.ImageObserver
|
||
|
* @see java.awt.image.ImageObserver#imageUpdate(java.awt.Image, int, int, int, int, int)
|
||
|
* @since JDK1.0
|
||
|
*/
|
||
|
public boolean drawImage(Image img, int x, int y,
|
||
|
Color bgcolor,
|
||
|
ImageObserver observer) {
|
||
|
boolean result;
|
||
|
|
||
|
int srcWidth = img.getWidth(null);
|
||
|
int srcHeight = img.getHeight(null);
|
||
|
|
||
|
if (srcWidth < 0 || srcHeight < 0) {
|
||
|
result = false;
|
||
|
} else {
|
||
|
result = drawImage(img, x, y, srcWidth, srcHeight, bgcolor, observer);
|
||
|
}
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Draws as much of the specified image as has already been scaled
|
||
|
* to fit inside the specified rectangle.
|
||
|
* <p>
|
||
|
* The image is drawn inside the specified rectangle of this
|
||
|
* graphics context's coordinate space, and is scaled if
|
||
|
* necessary. Transparent pixels are drawn in the specified
|
||
|
* background color.
|
||
|
* This operation is equivalent to filling a rectangle of the
|
||
|
* width and height of the specified image with the given color and then
|
||
|
* drawing the image on top of it, but possibly more efficient.
|
||
|
* <p>
|
||
|
* This method returns immediately in all cases, even if the
|
||
|
* entire image has not yet been scaled, dithered, and converted
|
||
|
* for the current output device.
|
||
|
* If the current output representation is not yet complete then
|
||
|
* <code>drawImage</code> returns <code>false</code>. As more of
|
||
|
* the image becomes available, the process that draws the image notifies
|
||
|
* the specified image observer.
|
||
|
* <p>
|
||
|
* A scaled version of an image will not necessarily be
|
||
|
* available immediately just because an unscaled version of the
|
||
|
* image has been constructed for this output device. Each size of
|
||
|
* the image may be cached separately and generated from the original
|
||
|
* data in a separate image production sequence.
|
||
|
* @param img the specified image to be drawn.
|
||
|
* @param x the <i>x</i> coordinate.
|
||
|
* @param y the <i>y</i> coordinate.
|
||
|
* @param width the width of the rectangle.
|
||
|
* @param height the height of the rectangle.
|
||
|
* @param bgcolor the background color to paint under the
|
||
|
* non-opaque portions of the image.
|
||
|
* @param observer object to be notified as more of
|
||
|
* the image is converted.
|
||
|
* @see java.awt.Image
|
||
|
* @see java.awt.image.ImageObserver
|
||
|
* @see java.awt.image.ImageObserver#imageUpdate(java.awt.Image, int, int, int, int, int)
|
||
|
* @since JDK1.0
|
||
|
*/
|
||
|
public boolean drawImage(Image img, int x, int y,
|
||
|
int width, int height,
|
||
|
Color bgcolor,
|
||
|
ImageObserver observer) {
|
||
|
|
||
|
boolean result;
|
||
|
int srcWidth = img.getWidth(null);
|
||
|
int srcHeight = img.getHeight(null);
|
||
|
|
||
|
if (srcWidth < 0 || srcHeight < 0) {
|
||
|
result = false;
|
||
|
} else {
|
||
|
result = drawImage(img,
|
||
|
x, y, x + width, y + height,
|
||
|
0, 0, srcWidth, srcHeight,
|
||
|
observer);
|
||
|
}
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Draws as much of the specified area of the specified image as is
|
||
|
* currently available, scaling it on the fly to fit inside the
|
||
|
* specified area of the destination drawable surface. Transparent pixels
|
||
|
* do not affect whatever pixels are already there.
|
||
|
* <p>
|
||
|
* This method returns immediately in all cases, even if the
|
||
|
* image area to be drawn has not yet been scaled, dithered, and converted
|
||
|
* for the current output device.
|
||
|
* If the current output representation is not yet complete then
|
||
|
* <code>drawImage</code> returns <code>false</code>. As more of
|
||
|
* the image becomes available, the process that draws the image notifies
|
||
|
* the specified image observer.
|
||
|
* <p>
|
||
|
* This method always uses the unscaled version of the image
|
||
|
* to render the scaled rectangle and performs the required
|
||
|
* scaling on the fly. It does not use a cached, scaled version
|
||
|
* of the image for this operation. Scaling of the image from source
|
||
|
* to destination is performed such that the first coordinate
|
||
|
* of the source rectangle is mapped to the first coordinate of
|
||
|
* the destination rectangle, and the second source coordinate is
|
||
|
* mapped to the second destination coordinate. The subimage is
|
||
|
* scaled and flipped as needed to preserve those mappings.
|
||
|
* @param img the specified image to be drawn
|
||
|
* @param dx1 the <i>x</i> coordinate of the first corner of the
|
||
|
* destination rectangle.
|
||
|
* @param dy1 the <i>y</i> coordinate of the first corner of the
|
||
|
* destination rectangle.
|
||
|
* @param dx2 the <i>x</i> coordinate of the second corner of the
|
||
|
* destination rectangle.
|
||
|
* @param dy2 the <i>y</i> coordinate of the second corner of the
|
||
|
* destination rectangle.
|
||
|
* @param sx1 the <i>x</i> coordinate of the first corner of the
|
||
|
* source rectangle.
|
||
|
* @param sy1 the <i>y</i> coordinate of the first corner of the
|
||
|
* source rectangle.
|
||
|
* @param sx2 the <i>x</i> coordinate of the second corner of the
|
||
|
* source rectangle.
|
||
|
* @param sy2 the <i>y</i> coordinate of the second corner of the
|
||
|
* source rectangle.
|
||
|
* @param observer object to be notified as more of the image is
|
||
|
* scaled and converted.
|
||
|
* @see java.awt.Image
|
||
|
* @see java.awt.image.ImageObserver
|
||
|
* @see java.awt.image.ImageObserver#imageUpdate(java.awt.Image, int, int, int, int, int)
|
||
|
* @since JDK1.1
|
||
|
*/
|
||
|
public boolean drawImage(Image img,
|
||
|
int dx1, int dy1, int dx2, int dy2,
|
||
|
int sx1, int sy1, int sx2, int sy2,
|
||
|
ImageObserver observer) {
|
||
|
|
||
|
return drawImage(img,
|
||
|
dx1, dy1, dx2, dy2,
|
||
|
sx1, sy1, sx2, sy2,
|
||
|
null, observer);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Draws as much of the specified area of the specified image as is
|
||
|
* currently available, scaling it on the fly to fit inside the
|
||
|
* specified area of the destination drawable surface.
|
||
|
* <p>
|
||
|
* Transparent pixels are drawn in the specified background color.
|
||
|
* This operation is equivalent to filling a rectangle of the
|
||
|
* width and height of the specified image with the given color and then
|
||
|
* drawing the image on top of it, but possibly more efficient.
|
||
|
* <p>
|
||
|
* This method returns immediately in all cases, even if the
|
||
|
* image area to be drawn has not yet been scaled, dithered, and converted
|
||
|
* for the current output device.
|
||
|
* If the current output representation is not yet complete then
|
||
|
* <code>drawImage</code> returns <code>false</code>. As more of
|
||
|
* the image becomes available, the process that draws the image notifies
|
||
|
* the specified image observer.
|
||
|
* <p>
|
||
|
* This method always uses the unscaled version of the image
|
||
|
* to render the scaled rectangle and performs the required
|
||
|
* scaling on the fly. It does not use a cached, scaled version
|
||
|
* of the image for this operation. Scaling of the image from source
|
||
|
* to destination is performed such that the first coordinate
|
||
|
* of the source rectangle is mapped to the first coordinate of
|
||
|
* the destination rectangle, and the second source coordinate is
|
||
|
* mapped to the second destination coordinate. The subimage is
|
||
|
* scaled and flipped as needed to preserve those mappings.
|
||
|
* @param img the specified image to be drawn
|
||
|
* @param dx1 the <i>x</i> coordinate of the first corner of the
|
||
|
* destination rectangle.
|
||
|
* @param dy1 the <i>y</i> coordinate of the first corner of the
|
||
|
* destination rectangle.
|
||
|
* @param dx2 the <i>x</i> coordinate of the second corner of the
|
||
|
* destination rectangle.
|
||
|
* @param dy2 the <i>y</i> coordinate of the second corner of the
|
||
|
* destination rectangle.
|
||
|
* @param sx1 the <i>x</i> coordinate of the first corner of the
|
||
|
* source rectangle.
|
||
|
* @param sy1 the <i>y</i> coordinate of the first corner of the
|
||
|
* source rectangle.
|
||
|
* @param sx2 the <i>x</i> coordinate of the second corner of the
|
||
|
* source rectangle.
|
||
|
* @param sy2 the <i>y</i> coordinate of the second corner of the
|
||
|
* source rectangle.
|
||
|
* @param bgcolor the background color to paint under the
|
||
|
* non-opaque portions of the image.
|
||
|
* @param observer object to be notified as more of the image is
|
||
|
* scaled and converted.
|
||
|
* @see java.awt.Image
|
||
|
* @see java.awt.image.ImageObserver
|
||
|
* @see java.awt.image.ImageObserver#imageUpdate(java.awt.Image, int, int, int, int, int)
|
||
|
* @since JDK1.1
|
||
|
*/
|
||
|
public boolean drawImage(Image img,
|
||
|
int dx1, int dy1, int dx2, int dy2,
|
||
|
int sx1, int sy1, int sx2, int sy2,
|
||
|
Color bgcolor,
|
||
|
ImageObserver observer) {
|
||
|
|
||
|
|
||
|
int srcWidth = sx2 - sx1;
|
||
|
int srcHeight = sy2 - sy1;
|
||
|
|
||
|
/* Create a transform which describes the changes
|
||
|
* from the source coordinates to the destination
|
||
|
* coordinates. The scaling is determined by the
|
||
|
* ratio of the two rectangles, while the translation
|
||
|
* comes from the difference of their origins.
|
||
|
*/
|
||
|
float scalex = (float) (dx2 - dx1) / srcWidth;
|
||
|
float scaley = (float) (dy2 - dy1) / srcHeight;
|
||
|
AffineTransform xForm
|
||
|
= new AffineTransform(scalex,
|
||
|
0,
|
||
|
0,
|
||
|
scaley,
|
||
|
dx1 - (sx1 * scalex),
|
||
|
dy1 - (sy1 * scaley));
|
||
|
|
||
|
return drawImageToGDI(img, xForm, null, bgcolor,
|
||
|
sx1, sy1, srcWidth, srcHeight, false);
|
||
|
|
||
|
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Draws an image, applying a transform from image space into user space
|
||
|
* before drawing.
|
||
|
* The transformation from user space into device space is done with
|
||
|
* the current transform in the Graphics2D.
|
||
|
* The given transformation is applied to the image before the
|
||
|
* transform attribute in the Graphics2D state is applied.
|
||
|
* The rendering attributes applied include the clip, transform,
|
||
|
* and composite attributes. Note that the result is
|
||
|
* undefined, if the given transform is noninvertible.
|
||
|
* @param img The image to be drawn.
|
||
|
* @param xform The transformation from image space into user space.
|
||
|
* @param obs The image observer to be notified as more of the image
|
||
|
* is converted.
|
||
|
* @see #transform
|
||
|
* @see #setTransform
|
||
|
* @see #setComposite
|
||
|
* @see #clip
|
||
|
* @see #setClip
|
||
|
*/
|
||
|
public boolean drawImage(Image img,
|
||
|
AffineTransform xform,
|
||
|
ImageObserver obs) {
|
||
|
boolean result;
|
||
|
int srcWidth = img.getWidth(null);
|
||
|
int srcHeight = img.getHeight(null);
|
||
|
|
||
|
if (srcWidth < 0 || srcHeight < 0) {
|
||
|
result = false;
|
||
|
} else {
|
||
|
result = drawImageToGDI(img, xform,
|
||
|
null, null,
|
||
|
0, 0,
|
||
|
srcWidth, srcHeight, false);
|
||
|
}
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Draws a BufferedImage that is filtered with a BufferedImageOp.
|
||
|
* The rendering attributes applied include the clip, transform
|
||
|
* and composite attributes. This is equivalent to:
|
||
|
* <pre>
|
||
|
* img1 = op.filter(img, null);
|
||
|
* drawImage(img1, new AffineTransform(1f,0f,0f,1f,x,y), null);
|
||
|
* </pre>
|
||
|
* @param op The filter to be applied to the image before drawing.
|
||
|
* @param img The BufferedImage to be drawn.
|
||
|
* @param x,y The location in user space where the image should be drawn.
|
||
|
* @see #transform
|
||
|
* @see #setTransform
|
||
|
* @see #setComposite
|
||
|
* @see #clip
|
||
|
* @see #setClip
|
||
|
*/
|
||
|
public void drawImage(BufferedImage img,
|
||
|
BufferedImageOp op,
|
||
|
int x,
|
||
|
int y) {
|
||
|
|
||
|
boolean result;
|
||
|
int srcWidth = img.getWidth(null);
|
||
|
int srcHeight = img.getHeight(null);
|
||
|
|
||
|
if (op != null) {
|
||
|
img = op.filter(img, null);
|
||
|
}
|
||
|
if (srcWidth < 0 || srcHeight < 0) {
|
||
|
result = false;
|
||
|
} else {
|
||
|
AffineTransform xform = new AffineTransform(1f,0f,0f,1f,x,y);
|
||
|
result = drawImageToGDI(img, xform,
|
||
|
null, null,
|
||
|
0, 0,
|
||
|
srcWidth, srcHeight, false);
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Draws an image, applying a transform from image space into user space
|
||
|
* before drawing.
|
||
|
* The transformation from user space into device space is done with
|
||
|
* the current transform in the Graphics2D.
|
||
|
* The given transformation is applied to the image before the
|
||
|
* transform attribute in the Graphics2D state is applied.
|
||
|
* The rendering attributes applied include the clip, transform,
|
||
|
* and composite attributes. Note that the result is
|
||
|
* undefined, if the given transform is noninvertible.
|
||
|
* @param img The image to be drawn.
|
||
|
* @param xform The transformation from image space into user space.
|
||
|
* @see #transform
|
||
|
* @see #setTransform
|
||
|
* @see #setComposite
|
||
|
* @see #clip
|
||
|
* @see #setClip
|
||
|
*/
|
||
|
public void drawRenderedImage(RenderedImage img,
|
||
|
AffineTransform xform) {
|
||
|
|
||
|
BufferedImage bufferedImage = null;
|
||
|
int srcWidth = img.getWidth();
|
||
|
int srcHeight = img.getHeight();
|
||
|
|
||
|
if (img instanceof BufferedImage) {
|
||
|
bufferedImage = (BufferedImage) img;
|
||
|
} else {
|
||
|
bufferedImage = new BufferedImage(srcWidth, srcHeight,
|
||
|
BufferedImage.TYPE_INT_ARGB);
|
||
|
Graphics2D imageGraphics = bufferedImage.createGraphics();
|
||
|
imageGraphics.drawRenderedImage(img, xform);
|
||
|
}
|
||
|
|
||
|
drawImageToGDI(bufferedImage, xform,
|
||
|
null, null,
|
||
|
0, 0, srcWidth, srcHeight, false);
|
||
|
|
||
|
}
|
||
|
|
||
|
/* An optimisation for the special case of ICM images which have
|
||
|
* bitmask transparency.
|
||
|
*/
|
||
|
private boolean drawBitmaskImage(Image img,
|
||
|
AffineTransform xform,
|
||
|
BufferedImageOp op, Color bgcolor,
|
||
|
int srcX, int srcY,
|
||
|
int srcWidth, int srcHeight) {
|
||
|
|
||
|
ColorModel colorModel;
|
||
|
IndexColorModel icm;
|
||
|
BufferedImage bufferedImage;
|
||
|
int [] pixels;
|
||
|
|
||
|
/* first do a set of checks to see if this is something we
|
||
|
* can handle in this method. If not return false.
|
||
|
*/
|
||
|
|
||
|
if (img instanceof BufferedImage) {
|
||
|
bufferedImage = (BufferedImage) img;
|
||
|
colorModel = bufferedImage.getColorModel();
|
||
|
|
||
|
} else if (img instanceof WImage) {
|
||
|
WImage wImage = (WImage) img;
|
||
|
bufferedImage = wImage.getBufferedImage();
|
||
|
if (bufferedImage == null) {
|
||
|
return true;
|
||
|
}
|
||
|
colorModel = wImage.getColorModel();
|
||
|
} else if (img instanceof java.awt.image.VolatileImage) {
|
||
|
/* in 1.4 VolatileImage is always opaque so should not reach here
|
||
|
* for that case. The code here to deal with that case is
|
||
|
* basically a safeguard in 1.4, but may be invoked in 1.5
|
||
|
*/
|
||
|
bufferedImage = ((java.awt.image.VolatileImage)img).getSnapshot();
|
||
|
colorModel = bufferedImage.getColorModel();
|
||
|
} else {
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
if (!(colorModel instanceof IndexColorModel)) {
|
||
|
return false;
|
||
|
} else {
|
||
|
icm = (IndexColorModel)colorModel;
|
||
|
}
|
||
|
|
||
|
if (colorModel.getTransparency() != ColorModel.BITMASK) {
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
if (op != null) {
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
// to be compatible with 1.1 printing which treated b/g colors
|
||
|
// with alpha 128 as opaque
|
||
|
if (bgcolor != null && bgcolor.getAlpha() < 128) {
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
if ((xform.getType()
|
||
|
& ~( AffineTransform.TYPE_UNIFORM_SCALE
|
||
|
| AffineTransform.TYPE_TRANSLATION
|
||
|
| AffineTransform.TYPE_QUADRANT_ROTATION
|
||
|
)) != 0) {
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
if ((getTransform().getType()
|
||
|
& ~( AffineTransform.TYPE_UNIFORM_SCALE
|
||
|
| AffineTransform.TYPE_TRANSLATION
|
||
|
| AffineTransform.TYPE_QUADRANT_ROTATION
|
||
|
)) != 0) {
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
BufferedImage subImage = null;
|
||
|
Raster raster = bufferedImage.getRaster();
|
||
|
int transpixel = icm.getTransparentPixel();
|
||
|
byte[] alphas = new byte[icm.getMapSize()];
|
||
|
icm.getAlphas(alphas);
|
||
|
if (transpixel >= 0) {
|
||
|
alphas[transpixel] = 0;
|
||
|
}
|
||
|
|
||
|
/* don't just use srcWidth & srcHeight from application - they
|
||
|
* may exceed the extent of the image - may need to clip.
|
||
|
* The image xform will ensure that points are still mapped properly.
|
||
|
*/
|
||
|
int rw = raster.getWidth();
|
||
|
int rh = raster.getHeight();
|
||
|
if (srcX > rw || srcY > rh) {
|
||
|
return false;
|
||
|
}
|
||
|
int right, bottom, wid, hgt;
|
||
|
if (srcX+srcWidth > rw) {
|
||
|
right = rw;
|
||
|
wid = right - srcX;
|
||
|
} else {
|
||
|
right = srcX+srcWidth;
|
||
|
wid = srcWidth;
|
||
|
}
|
||
|
if (srcY+srcHeight > rh) {
|
||
|
bottom = rh;
|
||
|
hgt = bottom - srcY;
|
||
|
} else {
|
||
|
bottom = srcY+srcHeight;
|
||
|
hgt = srcHeight;
|
||
|
}
|
||
|
pixels = new int[wid];
|
||
|
for (int j=srcY; j<bottom; j++) {
|
||
|
int startx = -1;
|
||
|
raster.getPixels(srcX, j, wid, 1, pixels);
|
||
|
for (int i=srcX; i<right; i++) {
|
||
|
if (alphas[pixels[i-srcX]] == 0) {
|
||
|
if (startx >=0) {
|
||
|
subImage = bufferedImage.getSubimage(startx, j,
|
||
|
i-startx, 1);
|
||
|
xform.translate(startx, j);
|
||
|
drawImageToGDI(subImage, xform, op, bgcolor,
|
||
|
0, 0, i-startx, 1, true);
|
||
|
xform.translate(-startx, -j);
|
||
|
startx = -1;
|
||
|
}
|
||
|
} else if (startx < 0) {
|
||
|
startx = i;
|
||
|
}
|
||
|
}
|
||
|
if (startx >= 0) {
|
||
|
subImage = bufferedImage.getSubimage(startx, j,
|
||
|
right - startx, 1);
|
||
|
xform.translate(startx, j);
|
||
|
drawImageToGDI(subImage, xform, op, bgcolor,
|
||
|
0, 0, right - startx, 1, true);
|
||
|
xform.translate(-startx, -j);
|
||
|
}
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* The various <code>drawImage()</code> methods for
|
||
|
* <code>WPathGraphics</code> are all decomposed
|
||
|
* into an invocation of <code>drawImageToGDI</code>.
|
||
|
* The portion of the passed in image defined by
|
||
|
* <code>srcX, srcY, srcWidth, and srcHeight</code>
|
||
|
* is transformed by the supplied AffineTransform and
|
||
|
* drawn using GDI to the printer context.
|
||
|
*
|
||
|
* @param img The image to be drawn.
|
||
|
* @param xform Used to tranform the image before drawing.
|
||
|
* This can be null.
|
||
|
* @param op Specifies an image operator to be used when
|
||
|
* drawing the image. This parameter can be null.
|
||
|
* @param bgcolor This color is drawn where the image has transparent
|
||
|
* pixels. If this parameter is null then the
|
||
|
* pixels already in the destination should show
|
||
|
* through.
|
||
|
* @param srcX With srcY this defines the upper-left corner
|
||
|
* of the portion of the image to be drawn.
|
||
|
*
|
||
|
* @param srcY With srcX this defines the upper-left corner
|
||
|
* of the portion of the image to be drawn.
|
||
|
* @param srcWidth The width of the portion of the image to
|
||
|
* be drawn.
|
||
|
* @param srcHeight The height of the portion of the image to
|
||
|
* be drawn.
|
||
|
* @param handlingTransparency if being recursively called to
|
||
|
* print opaque region of transparent image
|
||
|
*/
|
||
|
private boolean drawImageToGDI(Image img, AffineTransform xform,
|
||
|
BufferedImageOp op, Color bgcolor,
|
||
|
int srcX, int srcY,
|
||
|
int srcWidth, int srcHeight,
|
||
|
boolean handlingTransparency) {
|
||
|
|
||
|
if (img instanceof WImage) {
|
||
|
WImage wImage = (WImage) img;
|
||
|
if (wImage.getBufferedImage() == null) {
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
WPrinterJob wPrinterJob = (WPrinterJob) getPrinterJob();
|
||
|
|
||
|
/* The full transform to be applied to the image is the
|
||
|
* caller's transform concatenated on to the transform
|
||
|
* from user space to device space. If the caller didn't
|
||
|
* supply a transform then we just act as if they passed
|
||
|
* in the identify transform.
|
||
|
*/
|
||
|
AffineTransform fullTransform = getTransform();
|
||
|
if (xform == null) {
|
||
|
xform = new AffineTransform();
|
||
|
}
|
||
|
fullTransform.concatenate(xform);
|
||
|
|
||
|
/* Split the full transform into a pair of
|
||
|
* transforms. The first transform holds effects
|
||
|
* that GDI (under Win95) can not perform such
|
||
|
* as rotation and shearing. The second transform
|
||
|
* is setup to hold only the scaling effects.
|
||
|
* These transforms are created such that a point,
|
||
|
* p, in user space, when transformed by 'fullTransform'
|
||
|
* lands in the same place as when it is transformed
|
||
|
* by 'rotTransform' and then 'scaleTransform'.
|
||
|
*
|
||
|
* The entire image transformation is not in Java in order
|
||
|
* to minimize the amount of memory needed in the VM. By
|
||
|
* dividing the transform in two, we rotate and shear
|
||
|
* the source image in its own space and only go to
|
||
|
* the, usually, larger, device space when we ask
|
||
|
* GDI to perform the final scaling.
|
||
|
*/
|
||
|
double[] fullMatrix = new double[6];
|
||
|
fullTransform.getMatrix(fullMatrix);
|
||
|
|
||
|
/* Calculate the amount of scaling in the x
|
||
|
* and y directions. This scaling is computed by
|
||
|
* transforming a unit vector along each axis
|
||
|
* and computing the resulting magnitude.
|
||
|
* The computed values 'scaleX' and 'scaleY'
|
||
|
* represent the amount of scaling GDI will be asked
|
||
|
* to perform.
|
||
|
*/
|
||
|
Point2D.Float unitVectorX = new Point2D.Float(1, 0);
|
||
|
Point2D.Float unitVectorY = new Point2D.Float(0, 1);
|
||
|
fullTransform.deltaTransform(unitVectorX, unitVectorX);
|
||
|
fullTransform.deltaTransform(unitVectorY, unitVectorY);
|
||
|
|
||
|
Point2D.Float origin = new Point2D.Float(0, 0);
|
||
|
double scaleX = unitVectorX.distance(origin);
|
||
|
double scaleY = unitVectorY.distance(origin);
|
||
|
|
||
|
/* We do not need to draw anything if either scaling
|
||
|
* factor is zero.
|
||
|
*/
|
||
|
if (scaleX != 0 && scaleY != 0) {
|
||
|
|
||
|
/* Here's the transformation we will do with Java2D,
|
||
|
*/
|
||
|
fullMatrix[0] /= scaleX; //m00
|
||
|
fullMatrix[1] /= scaleY; //m10
|
||
|
fullMatrix[2] /= scaleX; //m01
|
||
|
fullMatrix[3] /= scaleY; //m11
|
||
|
fullMatrix[4] /= scaleX; //m02
|
||
|
fullMatrix[5] /= scaleY; //m12
|
||
|
for (int i = 0; i < 6; i++) {
|
||
|
double val = Math.floor(fullMatrix[i] + 0.5);
|
||
|
if (Math.abs(fullMatrix[i] - val) < 0.0001) {
|
||
|
fullMatrix[i] = val;
|
||
|
}
|
||
|
}
|
||
|
AffineTransform rotTransform = new AffineTransform(fullMatrix);
|
||
|
|
||
|
/* The scale transform is not used directly: we instead
|
||
|
* directly multiply by scaleX and scaleY.
|
||
|
*
|
||
|
* Conceptually here is what the scaleTransform is:
|
||
|
*
|
||
|
* AffineTransform scaleTransform = new AffineTransform(
|
||
|
* scaleX, //m00
|
||
|
* 0, //m10
|
||
|
* 0, //m01
|
||
|
* scaleY, //m11
|
||
|
* 0, //m02
|
||
|
* 0); //m12
|
||
|
*/
|
||
|
|
||
|
/* Convert the image source's rectangle into the rotated
|
||
|
* and sheared space. Once there, we calculate a rectangle
|
||
|
* that encloses the resulting shape. It is this rectangle
|
||
|
* which defines the size of the BufferedImage we need to
|
||
|
* create to hold the transformed image.
|
||
|
*/
|
||
|
Rectangle2D.Float srcRect = new Rectangle2D.Float(srcX, srcY,
|
||
|
srcWidth,
|
||
|
srcHeight);
|
||
|
|
||
|
Shape rotShape = rotTransform.createTransformedShape(srcRect);
|
||
|
Rectangle2D rotBounds = rotShape.getBounds2D();
|
||
|
|
||
|
/* add a fudge factor as some fp precision problems have
|
||
|
* been observed which caused pixels to be rounded down and
|
||
|
* out of the image.
|
||
|
*/
|
||
|
rotBounds.setRect(rotBounds.getX(), rotBounds.getY(),
|
||
|
rotBounds.getWidth()+0.001,
|
||
|
rotBounds.getHeight()+0.001);
|
||
|
|
||
|
int boundsWidth = (int) rotBounds.getWidth();
|
||
|
int boundsHeight = (int) rotBounds.getHeight();
|
||
|
|
||
|
if (boundsWidth > 0 && boundsHeight > 0) {
|
||
|
|
||
|
/* If the image has transparent or semi-transparent
|
||
|
* pixels then we'll have the application re-render
|
||
|
* the portion of the page covered by the image.
|
||
|
* The BufferedImage will be at the image's resolution
|
||
|
* to avoid wasting memory. By re-rendering this portion
|
||
|
* of a page all compositing is done by Java2D into
|
||
|
* the BufferedImage and then that image is copied to
|
||
|
* GDI.
|
||
|
* However several special cases can be handled otherwise:
|
||
|
* - bitmask transparency with a solid background colour
|
||
|
* - images which have transparency color models but no
|
||
|
* transparent pixels
|
||
|
* - images with bitmask transparency and an IndexColorModel
|
||
|
* (the common transparent GIF case) can be handled by
|
||
|
* rendering just the opaque pixels.
|
||
|
*/
|
||
|
boolean drawOpaque = true;
|
||
|
if (!handlingTransparency && hasTransparentPixels(img)) {
|
||
|
drawOpaque = false;
|
||
|
if (isBitmaskTransparency(img)) {
|
||
|
if (bgcolor == null) {
|
||
|
if (drawBitmaskImage(img, xform, op, bgcolor,
|
||
|
srcX, srcY,
|
||
|
srcWidth, srcHeight)) {
|
||
|
// image drawn, just return.
|
||
|
return true;
|
||
|
}
|
||
|
} else if (bgcolor.getTransparency()
|
||
|
== Transparency.OPAQUE) {
|
||
|
drawOpaque = true;
|
||
|
}
|
||
|
}
|
||
|
if (!canDoRedraws()) {
|
||
|
drawOpaque = true;
|
||
|
}
|
||
|
} else {
|
||
|
// if there's no transparent pixels there's no need
|
||
|
// for a background colour. This can avoid edge artifacts
|
||
|
// in rotation cases.
|
||
|
bgcolor = null;
|
||
|
}
|
||
|
// if src region extends beyond the image, the "opaque" path
|
||
|
// may blit b/g colour (including white) where it shoudn't.
|
||
|
if ((srcX+srcWidth > img.getWidth(null) ||
|
||
|
srcY+srcHeight > img.getHeight(null))
|
||
|
&& canDoRedraws()) {
|
||
|
drawOpaque = false;
|
||
|
}
|
||
|
if (drawOpaque == false) {
|
||
|
wPrinterJob.saveState(getTransform(), getClip(),
|
||
|
rotBounds, scaleX, scaleY,
|
||
|
srcRect, xform);
|
||
|
return true;
|
||
|
|
||
|
/* The image can be rendered directly by GDI so we
|
||
|
* copy it into a BufferedImage (this takes care of
|
||
|
* ColorSpace and BufferedImageOp issues) and then
|
||
|
* send that to GDI.
|
||
|
*/
|
||
|
} else {
|
||
|
|
||
|
/* Create a buffered image big enough to hold the portion
|
||
|
* of the source image being printed.
|
||
|
*/
|
||
|
BufferedImage deepImage = new BufferedImage(
|
||
|
(int) rotBounds.getWidth(),
|
||
|
(int) rotBounds.getHeight(),
|
||
|
BufferedImage.TYPE_3BYTE_BGR);
|
||
|
|
||
|
/* Setup a Graphics2D on to the BufferedImage so that the
|
||
|
* source image when copied, lands within the image buffer.
|
||
|
*/
|
||
|
Graphics2D imageGraphics = deepImage.createGraphics();
|
||
|
imageGraphics.clipRect(0, 0,
|
||
|
deepImage.getWidth(),
|
||
|
deepImage.getHeight());
|
||
|
|
||
|
|
||
|
imageGraphics.translate(-rotBounds.getX(),
|
||
|
-rotBounds.getY());
|
||
|
imageGraphics.transform(rotTransform);
|
||
|
|
||
|
/* Fill the BufferedImage either with the caller supplied
|
||
|
* color, 'bgColor' or, if null, with white.
|
||
|
*/
|
||
|
if (bgcolor == null) {
|
||
|
bgcolor = Color.white;
|
||
|
}
|
||
|
|
||
|
imageGraphics.drawImage(img,
|
||
|
srcX, srcY,
|
||
|
srcX + srcWidth, srcY + srcHeight,
|
||
|
srcX, srcY,
|
||
|
srcX + srcWidth, srcY + srcHeight,
|
||
|
bgcolor, null);
|
||
|
|
||
|
/* Because the caller's image has been rotated
|
||
|
* and sheared into our BufferedImage and because
|
||
|
* we will be handing that BufferedImage directly to
|
||
|
* GDI, we need to set an additional clip. This clip
|
||
|
* makes sure that only parts of the BufferedImage
|
||
|
* that are also part of the caller's image are drawn.
|
||
|
*/
|
||
|
Shape holdClip = getClip();
|
||
|
clip(xform.createTransformedShape(srcRect));
|
||
|
deviceClip(getClip().getPathIterator(getTransform()));
|
||
|
|
||
|
/* Scale the bounding rectangle by the scale transform.
|
||
|
* Because the scaling transform has only x and y
|
||
|
* scaling components it is equivalent to multiply
|
||
|
* the x components of the bounding rectangle by
|
||
|
* the x scaling factor and to multiply the y components
|
||
|
* by the y scaling factor.
|
||
|
*/
|
||
|
Rectangle2D.Float scaledBounds
|
||
|
= new Rectangle2D.Float(
|
||
|
(float) (rotBounds.getX() * scaleX),
|
||
|
(float) (rotBounds.getY() * scaleY),
|
||
|
(float) (rotBounds.getWidth() * scaleX),
|
||
|
(float) (rotBounds.getHeight() * scaleY));
|
||
|
|
||
|
/* Pull the raster data from the buffered image
|
||
|
* and pass it along to GDI.
|
||
|
*/
|
||
|
ByteComponentRaster tile
|
||
|
= (ByteComponentRaster)deepImage.getRaster();
|
||
|
|
||
|
wPrinterJob.drawImage3ByteBGR(tile.getDataStorage(),
|
||
|
scaledBounds.x, scaledBounds.y,
|
||
|
(float)Math.rint(scaledBounds.width+0.5),
|
||
|
(float)Math.rint(scaledBounds.height+0.5),
|
||
|
0f, 0f,
|
||
|
deepImage.getWidth(), deepImage.getHeight());
|
||
|
|
||
|
imageGraphics.dispose();
|
||
|
setClip(holdClip);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Return true of the Image <code>img</code> has non-opaque
|
||
|
* bits in it and therefore can not be directly rendered by
|
||
|
* GDI. Return false if the image is opaque. If this function
|
||
|
* can not tell for sure whether the image has transparent
|
||
|
* pixels then it assumes that is does.
|
||
|
*/
|
||
|
private boolean hasTransparentPixels(Image img) {
|
||
|
boolean hasTransparency = true;
|
||
|
BufferedImage bufferedImage = null;
|
||
|
ColorModel colorModel;
|
||
|
|
||
|
if (img instanceof BufferedImage) {
|
||
|
bufferedImage = (BufferedImage) img;
|
||
|
colorModel = bufferedImage.getColorModel();
|
||
|
|
||
|
} else if (img instanceof WImage) {
|
||
|
WImage wImage = (WImage) img;
|
||
|
bufferedImage = wImage.getBufferedImage();
|
||
|
if (bufferedImage == null) {
|
||
|
return false;
|
||
|
}
|
||
|
colorModel = wImage.getColorModel();
|
||
|
} else if (img instanceof java.awt.image.VolatileImage) {
|
||
|
// in 1.4 is always opaque - revisit this in 1.5
|
||
|
return false;
|
||
|
} else {
|
||
|
colorModel = null;
|
||
|
}
|
||
|
|
||
|
hasTransparency = colorModel == null
|
||
|
? true
|
||
|
: colorModel.getTransparency() != ColorModel.OPAQUE;
|
||
|
|
||
|
/*
|
||
|
* For the default INT ARGB check the image to see if any pixels are
|
||
|
* really transparent. If there are no transparent pixels then the
|
||
|
* transparency of the color model can be ignored.
|
||
|
* We assume that IndexColorModel images have already been
|
||
|
* checked for transparency and will be OPAQUE unless they actually
|
||
|
* have transparent pixels present.
|
||
|
*/
|
||
|
if (hasTransparency && bufferedImage != null) {
|
||
|
if (bufferedImage.getType()==BufferedImage.TYPE_INT_ARGB) {
|
||
|
DataBuffer db = bufferedImage.getRaster().getDataBuffer();
|
||
|
SampleModel sm = bufferedImage.getRaster().getSampleModel();
|
||
|
if (db instanceof DataBufferInt &&
|
||
|
sm instanceof SinglePixelPackedSampleModel) {
|
||
|
SinglePixelPackedSampleModel psm =
|
||
|
(SinglePixelPackedSampleModel)sm;
|
||
|
int[] int_data = ((DataBufferInt)db).getData();
|
||
|
int x = bufferedImage.getMinX();
|
||
|
int y = bufferedImage.getMinY();
|
||
|
int w = bufferedImage.getWidth();
|
||
|
int h = bufferedImage.getHeight();
|
||
|
int stride = psm.getScanlineStride();
|
||
|
boolean hastranspixel = false;
|
||
|
for (int j = y; j < y+h; j++) {
|
||
|
int yoff = y * stride;
|
||
|
for (int i = x; i < x+w; i++) {
|
||
|
if ((int_data[yoff+i] & 0xff000000)!=0xff000000 ) {
|
||
|
hastranspixel = true;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
if (hastranspixel) {
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
if (hastranspixel == false) {
|
||
|
hasTransparency = false;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return hasTransparency;
|
||
|
}
|
||
|
|
||
|
private boolean isBitmaskTransparency(Image img) {
|
||
|
ColorModel colorModel = null;
|
||
|
|
||
|
if (img instanceof BufferedImage) {
|
||
|
BufferedImage bufferedImage = (BufferedImage) img;
|
||
|
colorModel = bufferedImage.getColorModel();
|
||
|
|
||
|
} else if (img instanceof WImage) {
|
||
|
WImage wImage = (WImage) img;
|
||
|
colorModel = wImage.getColorModel();
|
||
|
} else if (img instanceof java.awt.image.VolatileImage) {
|
||
|
// in 1.4 VolatileImage is always opaque
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
return (colorModel != null &&
|
||
|
colorModel.getTransparency() == ColorModel.BITMASK);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Have the printing application redraw everything that falls
|
||
|
* within the page bounds defined by <code>region</code>.
|
||
|
*/
|
||
|
public void redrawRegion(Rectangle2D region, double scaleX, double scaleY,
|
||
|
Rectangle2D srcRect, AffineTransform xform)
|
||
|
throws PrinterException {
|
||
|
|
||
|
WPrinterJob wPrinterJob = (WPrinterJob)getPrinterJob();
|
||
|
Printable painter = getPrintable();
|
||
|
PageFormat pageFormat = getPageFormat();
|
||
|
int pageIndex = getPageIndex();
|
||
|
|
||
|
/* Create a buffered image big enough to hold the portion
|
||
|
* of the source image being printed.
|
||
|
*/
|
||
|
BufferedImage deepImage = new BufferedImage(
|
||
|
(int) region.getWidth(),
|
||
|
(int) region.getHeight(),
|
||
|
BufferedImage.TYPE_3BYTE_BGR);
|
||
|
|
||
|
/* Get a graphics for the application to render into.
|
||
|
* We initialize the buffer to white in order to
|
||
|
* match the paper and then we shift the BufferedImage
|
||
|
* so that it covers the area on the page where the
|
||
|
* caller's Image will be drawn.
|
||
|
*/
|
||
|
Graphics2D g = deepImage.createGraphics();
|
||
|
ProxyGraphics2D proxy = new ProxyGraphics2D(g, wPrinterJob);
|
||
|
proxy.setColor(Color.white);
|
||
|
proxy.fillRect(0, 0, deepImage.getWidth(), deepImage.getHeight());
|
||
|
proxy.clipRect(0, 0, deepImage.getWidth(), deepImage.getHeight());
|
||
|
|
||
|
proxy.translate(-region.getX(), -region.getY());
|
||
|
|
||
|
/* Calculate the resolution of the source image.
|
||
|
*/
|
||
|
float sourceResX = (float)(wPrinterJob.getXRes() / scaleX);
|
||
|
float sourceResY = (float)(wPrinterJob.getYRes() / scaleY);
|
||
|
|
||
|
/* The application expects to see user space at 72 dpi.
|
||
|
* so change user space from image source resolution to
|
||
|
* 72 dpi.
|
||
|
*/
|
||
|
proxy.scale(sourceResX / DEFAULT_USER_RES,
|
||
|
sourceResY / DEFAULT_USER_RES);
|
||
|
|
||
|
proxy.translate(
|
||
|
-wPrinterJob.getPhysicalPrintableX(pageFormat.getPaper())
|
||
|
/ wPrinterJob.getXRes() * DEFAULT_USER_RES,
|
||
|
-wPrinterJob.getPhysicalPrintableY(pageFormat.getPaper())
|
||
|
/ wPrinterJob.getYRes() * DEFAULT_USER_RES);
|
||
|
proxy.transform(new AffineTransform(getPageFormat().getMatrix()));
|
||
|
proxy.setPaint(Color.black);
|
||
|
|
||
|
painter.print(proxy, pageFormat, pageIndex);
|
||
|
|
||
|
g.dispose();
|
||
|
|
||
|
/* Because the caller's image has been rotated
|
||
|
* and sheared into our BufferedImage and because
|
||
|
* we will be handing that BufferedImage directly to
|
||
|
* GDI, we need to set an additional clip. This clip
|
||
|
* makes sure that only parts of the BufferedImage
|
||
|
* that are also part of the caller's image are drawn.
|
||
|
*/
|
||
|
//Shape holdClip = getClip();
|
||
|
clip(xform.createTransformedShape(srcRect));
|
||
|
deviceClip(getClip().getPathIterator(getTransform()));
|
||
|
|
||
|
/* Scale the bounding rectangle by the scale transform.
|
||
|
* Because the scaling transform has only x and y
|
||
|
* scaling components it is equivalent to multiplying
|
||
|
* the x components of the bounding rectangle by
|
||
|
* the x scaling factor and to multiplying the y components
|
||
|
* by the y scaling factor.
|
||
|
*/
|
||
|
Rectangle2D.Float scaledBounds
|
||
|
= new Rectangle2D.Float(
|
||
|
(float) (region.getX() * scaleX),
|
||
|
(float) (region.getY() * scaleY),
|
||
|
(float) (region.getWidth() * scaleX),
|
||
|
(float) (region.getHeight() * scaleY));
|
||
|
|
||
|
/* Pull the raster data from the buffered image
|
||
|
* and pass it along to GDI.
|
||
|
*/
|
||
|
ByteComponentRaster tile
|
||
|
= (ByteComponentRaster)deepImage.getRaster();
|
||
|
|
||
|
wPrinterJob.drawImage3ByteBGR(tile.getDataStorage(),
|
||
|
scaledBounds.x, scaledBounds.y,
|
||
|
scaledBounds.width,
|
||
|
scaledBounds.height,
|
||
|
0f, 0f,
|
||
|
deepImage.getWidth(), deepImage.getHeight());
|
||
|
|
||
|
|
||
|
//setClip(holdClip);
|
||
|
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Fill the path defined by <code>pathIter</code>
|
||
|
* with the specified color.
|
||
|
* The path is provided in device coordinates.
|
||
|
*/
|
||
|
protected void deviceFill(PathIterator pathIter, Color color) {
|
||
|
|
||
|
WPrinterJob wPrinterJob = (WPrinterJob) getPrinterJob();
|
||
|
|
||
|
convertToWPath(pathIter);
|
||
|
wPrinterJob.selectSolidBrush(color);
|
||
|
wPrinterJob.fillPath();
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Set the printer device's clip to be the
|
||
|
* path defined by <code>pathIter</code>
|
||
|
* The path is provided in device coordinates.
|
||
|
*/
|
||
|
protected void deviceClip(PathIterator pathIter) {
|
||
|
|
||
|
WPrinterJob wPrinterJob = (WPrinterJob) getPrinterJob();
|
||
|
|
||
|
convertToWPath(pathIter);
|
||
|
wPrinterJob.selectClipPath();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Draw the bounding rectangle using transformed coordinates.
|
||
|
*/
|
||
|
protected void deviceFrameRect(int x, int y, int width, int height,
|
||
|
Color color) {
|
||
|
|
||
|
AffineTransform deviceTransform = getTransform();
|
||
|
|
||
|
/* check if rotated or sheared */
|
||
|
int transformType = deviceTransform.getType();
|
||
|
boolean usePath = ((transformType &
|
||
|
(AffineTransform.TYPE_GENERAL_ROTATION |
|
||
|
AffineTransform.TYPE_GENERAL_TRANSFORM)) != 0);
|
||
|
|
||
|
if (usePath) {
|
||
|
draw(new Rectangle2D.Float(x, y, width, height));
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
Stroke stroke = getStroke();
|
||
|
|
||
|
if (stroke instanceof BasicStroke) {
|
||
|
BasicStroke lineStroke = (BasicStroke) stroke;
|
||
|
|
||
|
int endCap = lineStroke.getEndCap();
|
||
|
int lineJoin = lineStroke.getLineJoin();
|
||
|
|
||
|
|
||
|
/* check for default style and try to optimize it by
|
||
|
* calling the frameRect native function instead of using paths.
|
||
|
*/
|
||
|
if ((endCap == BasicStroke.CAP_SQUARE) &&
|
||
|
(lineJoin == BasicStroke.JOIN_MITER) &&
|
||
|
(lineStroke.getMiterLimit() ==10.0f)) {
|
||
|
|
||
|
float lineWidth = lineStroke.getLineWidth();
|
||
|
Point2D.Float penSize = new Point2D.Float(lineWidth,
|
||
|
lineWidth);
|
||
|
|
||
|
deviceTransform.deltaTransform(penSize, penSize);
|
||
|
float deviceLineWidth = Math.min(Math.abs(penSize.x),
|
||
|
Math.abs(penSize.y));
|
||
|
|
||
|
/* transform upper left coordinate */
|
||
|
Point2D.Float ul_pos = new Point2D.Float(x, y);
|
||
|
deviceTransform.transform(ul_pos, ul_pos);
|
||
|
|
||
|
/* transform lower right coordinate */
|
||
|
Point2D.Float lr_pos = new Point2D.Float(x + width,
|
||
|
y + height);
|
||
|
deviceTransform.transform(lr_pos, lr_pos);
|
||
|
|
||
|
float w = (float) (lr_pos.getX() - ul_pos.getX());
|
||
|
float h = (float)(lr_pos.getY() - ul_pos.getY());
|
||
|
|
||
|
WPrinterJob wPrinterJob = (WPrinterJob) getPrinterJob();
|
||
|
|
||
|
/* use selectStylePen, if supported */
|
||
|
if (wPrinterJob.selectStylePen(endCap, lineJoin,
|
||
|
deviceLineWidth, color) == true) {
|
||
|
wPrinterJob.frameRect((float)ul_pos.getX(),
|
||
|
(float)ul_pos.getY(), w, h);
|
||
|
}
|
||
|
/* not supported, must be a Win 9x */
|
||
|
else {
|
||
|
|
||
|
double lowerRes = Math.min(wPrinterJob.getXRes(),
|
||
|
wPrinterJob.getYRes());
|
||
|
|
||
|
if ((deviceLineWidth/lowerRes) < MAX_THINLINE_INCHES) {
|
||
|
/* use the default pen styles for thin pens. */
|
||
|
wPrinterJob.selectPen(deviceLineWidth, color);
|
||
|
wPrinterJob.frameRect((float)ul_pos.getX(),
|
||
|
(float)ul_pos.getY(), w, h);
|
||
|
}
|
||
|
else {
|
||
|
draw(new Rectangle2D.Float(x, y, width, height));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
draw(new Rectangle2D.Float(x, y, width, height));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Fill the rectangle with specified color and using Windows'
|
||
|
* GDI fillRect function.
|
||
|
* Boundaries are determined by the given coordinates.
|
||
|
*/
|
||
|
protected void deviceFillRect(int x, int y, int width, int height,
|
||
|
Color color) {
|
||
|
/*
|
||
|
* Transform to device coordinates
|
||
|
*/
|
||
|
AffineTransform deviceTransform = getTransform();
|
||
|
|
||
|
/* check if rotated or sheared */
|
||
|
int transformType = deviceTransform.getType();
|
||
|
boolean usePath = ((transformType &
|
||
|
(AffineTransform.TYPE_GENERAL_ROTATION |
|
||
|
AffineTransform.TYPE_GENERAL_TRANSFORM)) != 0);
|
||
|
if (usePath) {
|
||
|
fill(new Rectangle2D.Float(x, y, width, height));
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
Point2D.Float tlc_pos = new Point2D.Float(x, y);
|
||
|
deviceTransform.transform(tlc_pos, tlc_pos);
|
||
|
|
||
|
Point2D.Float brc_pos = new Point2D.Float(x+width, y+height);
|
||
|
deviceTransform.transform(brc_pos, brc_pos);
|
||
|
|
||
|
float deviceWidth = (float) (brc_pos.getX() - tlc_pos.getX());
|
||
|
float deviceHeight = (float)(brc_pos.getY() - tlc_pos.getY());
|
||
|
|
||
|
WPrinterJob wPrinterJob = (WPrinterJob) getPrinterJob();
|
||
|
wPrinterJob.fillRect((float)tlc_pos.getX(), (float)tlc_pos.getY(),
|
||
|
deviceWidth, deviceHeight, color);
|
||
|
}
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Draw a line using a pen created using the specified color
|
||
|
* and current stroke properties.
|
||
|
*/
|
||
|
protected void deviceDrawLine(int xBegin, int yBegin, int xEnd, int yEnd,
|
||
|
Color color) {
|
||
|
Stroke stroke = getStroke();
|
||
|
|
||
|
if (stroke instanceof BasicStroke) {
|
||
|
BasicStroke lineStroke = (BasicStroke) stroke;
|
||
|
|
||
|
if (lineStroke.getDashArray() != null) {
|
||
|
draw(new Line2D.Float(xBegin, yBegin, xEnd, yEnd));
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
float lineWidth = lineStroke.getLineWidth();
|
||
|
Point2D.Float penSize = new Point2D.Float(lineWidth, lineWidth);
|
||
|
|
||
|
AffineTransform deviceTransform = getTransform();
|
||
|
deviceTransform.deltaTransform(penSize, penSize);
|
||
|
|
||
|
float deviceLineWidth = Math.min(Math.abs(penSize.x),
|
||
|
Math.abs(penSize.y));
|
||
|
|
||
|
Point2D.Float begin_pos = new Point2D.Float(xBegin, yBegin);
|
||
|
deviceTransform.transform(begin_pos, begin_pos);
|
||
|
|
||
|
Point2D.Float end_pos = new Point2D.Float(xEnd, yEnd);
|
||
|
deviceTransform.transform(end_pos, end_pos);
|
||
|
|
||
|
int endCap = lineStroke.getEndCap();
|
||
|
int lineJoin = lineStroke.getLineJoin();
|
||
|
|
||
|
/* check if it's a one-pixel line */
|
||
|
if ((end_pos.getX() == begin_pos.getX())
|
||
|
&& (end_pos.getY() == begin_pos.getY())) {
|
||
|
|
||
|
/* endCap other than Round will not print!
|
||
|
* due to Windows GDI limitation, force it to CAP_ROUND
|
||
|
*/
|
||
|
endCap = BasicStroke.CAP_ROUND;
|
||
|
}
|
||
|
|
||
|
|
||
|
WPrinterJob wPrinterJob = (WPrinterJob) getPrinterJob();
|
||
|
|
||
|
/* call native function that creates pen with style */
|
||
|
if (wPrinterJob.selectStylePen(endCap, lineJoin,
|
||
|
deviceLineWidth, color)) {
|
||
|
wPrinterJob.moveTo((float)begin_pos.getX(),
|
||
|
(float)begin_pos.getY());
|
||
|
wPrinterJob.lineTo((float)end_pos.getX(),
|
||
|
(float)end_pos.getY());
|
||
|
}
|
||
|
/* selectStylePen is not supported, must be Win 9X */
|
||
|
else {
|
||
|
|
||
|
/* let's see if we can use a a default pen
|
||
|
* if it's round end (Windows' default style)
|
||
|
* or it's vertical/horizontal
|
||
|
* or stroke is too thin.
|
||
|
*/
|
||
|
double lowerRes = Math.min(wPrinterJob.getXRes(),
|
||
|
wPrinterJob.getYRes());
|
||
|
|
||
|
if ((endCap == BasicStroke.CAP_ROUND) ||
|
||
|
(((xBegin == xEnd) || (yBegin == yEnd)) &&
|
||
|
(deviceLineWidth/lowerRes < MAX_THINLINE_INCHES))) {
|
||
|
|
||
|
wPrinterJob.selectPen(deviceLineWidth, color);
|
||
|
wPrinterJob.moveTo((float)begin_pos.getX(),
|
||
|
(float)begin_pos.getY());
|
||
|
wPrinterJob.lineTo((float)end_pos.getX(),
|
||
|
(float)end_pos.getY());
|
||
|
}
|
||
|
else {
|
||
|
draw(new Line2D.Float(xBegin, yBegin, xEnd, yEnd));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Given a Java2D <code>PathIterator</code> instance,
|
||
|
* this method translates that into a Window's path
|
||
|
* in the printer device context.
|
||
|
*/
|
||
|
private void convertToWPath(PathIterator pathIter) {
|
||
|
|
||
|
float[] segment = new float[6];
|
||
|
int segmentType;
|
||
|
|
||
|
WPrinterJob wPrinterJob = (WPrinterJob) getPrinterJob();
|
||
|
|
||
|
/* Map the PathIterator's fill rule into the Window's
|
||
|
* polygon fill rule.
|
||
|
*/
|
||
|
int polyFillRule;
|
||
|
if (pathIter.getWindingRule() == PathIterator.WIND_EVEN_ODD) {
|
||
|
polyFillRule = WPrinterJob.POLYFILL_ALTERNATE;
|
||
|
} else {
|
||
|
polyFillRule = WPrinterJob.POLYFILL_WINDING;
|
||
|
}
|
||
|
wPrinterJob.setPolyFillMode(polyFillRule);
|
||
|
|
||
|
wPrinterJob.beginPath();
|
||
|
|
||
|
while (pathIter.isDone() == false) {
|
||
|
segmentType = pathIter.currentSegment(segment);
|
||
|
|
||
|
switch (segmentType) {
|
||
|
case PathIterator.SEG_MOVETO:
|
||
|
wPrinterJob.moveTo(segment[0], segment[1]);
|
||
|
break;
|
||
|
|
||
|
case PathIterator.SEG_LINETO:
|
||
|
wPrinterJob.lineTo(segment[0], segment[1]);
|
||
|
break;
|
||
|
|
||
|
/* Convert the quad path to a bezier.
|
||
|
*/
|
||
|
case PathIterator.SEG_QUADTO:
|
||
|
int lastX = wPrinterJob.getPenX();
|
||
|
int lastY = wPrinterJob.getPenY();
|
||
|
float c1x = lastX + (segment[0] - lastX) * 2 / 3;
|
||
|
float c1y = lastY + (segment[1] - lastY) * 2 / 3;
|
||
|
float c2x = segment[2] - (segment[2] - segment[0]) * 2/ 3;
|
||
|
float c2y = segment[3] - (segment[3] - segment[1]) * 2/ 3;
|
||
|
wPrinterJob.polyBezierTo(c1x, c1y,
|
||
|
c2x, c2y,
|
||
|
segment[2], segment[3]);
|
||
|
break;
|
||
|
|
||
|
case PathIterator.SEG_CUBICTO:
|
||
|
wPrinterJob.polyBezierTo(segment[0], segment[1],
|
||
|
segment[2], segment[3],
|
||
|
segment[4], segment[5]);
|
||
|
break;
|
||
|
|
||
|
case PathIterator.SEG_CLOSE:
|
||
|
wPrinterJob.closeFigure();
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
|
||
|
pathIter.next();
|
||
|
}
|
||
|
|
||
|
wPrinterJob.endPath();
|
||
|
|
||
|
}
|
||
|
|
||
|
}
|