1
0
mirror of https://github.com/pothos/arduino-n64-controller-library synced 2024-11-21 16:25:11 -05:00

Extract N64Interface

This commit is contained in:
Daniel Schaal 2017-05-14 09:16:42 +02:00
parent d670348f48
commit ac161c6d00
4 changed files with 344 additions and 334 deletions

View File

@ -1,41 +1,17 @@
#include "N64Controller.h" #include "N64Controller.h"
#include <Arduino.h> #include <Arduino.h>
#include "pins_arduino.h"
#define NOP asm volatile ("nop")
#define NOP5 asm volatile ("nop\nnop\nnop\nnop\nnop\n")
#define NOP30 asm volatile ("nop\nnop\nnop\nnop\nnop\n" \
"nop\nnop\nnop\nnop\nnop\n" \
"nop\nnop\nnop\nnop\nnop\n" \
"nop\nnop\nnop\nnop\nnop\n" \
"nop\nnop\nnop\nnop\nnop\n" \
"nop\nnop\nnop\nnop\nnop\n")
// these two macros set arduino pin 2 to input or output, which with an
// external 1K pull-up resistor to the 3.3V rail, is like pulling it high or
// low. These operations translate to 1 op code, which takes 2 cycles
#define N64_PIND_HIGH DDRD &= ~pincode
#define N64_PIND_LOW DDRD |= pincode
#define N64_PIND_QUERY (PIND & pincode)
#define N64_PINB_HIGH DDRB &= ~pincode
#define N64_PINB_LOW DDRB |= pincode
#define N64_PINB_QUERY (PINB & pincode)
N64Controller::N64Controller(unsigned char serialPin) { N64Controller::N64Controller(unsigned char serialPin) {
if(serialPin > 13) if(serialPin > 13)
serialPin = 2; serialPin = 2;
n64_PIN = serialPin;
}
void N64Controller::begin() {
// Communication with N64 controller controller on this pin // Communication with N64 controller controller on this pin
// Don't remove these lines, we don't want to push +5V to the controller // Don't remove these lines, we don't want to push +5V to the controller
digitalWrite(n64_PIN, LOW); digitalWrite(serialPin, LOW);
pinMode(n64_PIN, INPUT); pinMode(serialPin, INPUT);
n64_first_register = true; bool n64_first_register = true;
switch (n64_PIN) { char n64_pincode;
switch (serialPin) {
case 0: n64_pincode = 0x01; case 0: n64_pincode = 0x01;
break; break;
case 1: n64_pincode = 0x02; case 1: n64_pincode = 0x02;
@ -65,279 +41,20 @@ void N64Controller::begin() {
case 13: n64_pincode = 0x20; n64_first_register = false; case 13: n64_pincode = 0x20; n64_first_register = false;
break; break;
default: default:
n64_pincode = 0x04; n64_PIN = 2; n64_pincode = 0x04;
break; break;
} }
if (n64_first_register) { if(n64_first_register) {
N64_init_PIND(n64_pincode); interface = new N64Interface_PIND(n64_pincode);
} else { } else {
N64_init_PINB(n64_pincode); interface = new N64Interface_PINB(n64_pincode);
} }
} }
void N64Controller::N64_init_PIND(char pincode) { void N64Controller::begin() {
// Initialize the gamecube controller by sending it a null byte. interface->init();
// This is unnecessary for a standard controller, but is required for the
// Wavebird.
unsigned char initialize = 0x00;
noInterrupts();
N64_PIND_send(pincode, &initialize, 1);
// Stupid routine to wait for the gamecube controller to stop
// sending its response. We don't care what it is, but we
// can't start asking for status if it's still responding
int x;
for (x=0; x<64; x++) {
// make sure the line is idle for 64 iterations, should
// be plenty.
if (!N64_PIND_QUERY)
x = 0;
}
// Query for the gamecube controller's status. We do this
// to get the 0 point for the control stick.
unsigned char command[] = {0x01};
N64_PIND_send(pincode, command, 1);
// read in data and dump it to N64_raw_dump
N64_PIND_get(pincode);
interrupts();
} }
void N64Controller::N64_init_PINB(char pincode) {
unsigned char initialize = 0x00;
noInterrupts();
N64_PINB_send(pincode, &initialize, 1);
int x;
for (x=0; x<64; x++) {
if (!N64_PINB_QUERY)
x = 0;
}
unsigned char command[] = {0x01};
N64_PINB_send(pincode, command, 1);
N64_PINB_get(pincode);
interrupts();
}
/**
* This sends the given byte sequence to the controller
* length must be at least 1
* Oh, it destroys the buffer passed in as it writes it
*/
void N64Controller::N64_PIND_send(char pincode, unsigned char *buffer, char length) {
// Send these bytes
char bits;
// This routine is very carefully timed by examining the assembly output.
// Do not change any statements, it could throw the timings off
//
// We get 16 cycles per microsecond, which should be plenty, but we need to
// be conservative. Most assembly ops take 1 cycle, but a few take 2
//
// I use manually constructed for-loops out of gotos so I have more control
// over the outputted assembly. I can insert nops where it was impossible
// with a for loop
asm volatile (";Starting outer for loop");
outer_loop:
{
asm volatile (";Starting inner for loop");
bits=8;
inner_loop:
{
// Starting a bit, set the line low
asm volatile (";Setting line to low");
N64_PIND_LOW; // 1 op, 2 cycles
asm volatile (";branching");
if (*buffer >> 7) {
asm volatile (";Bit is a 1");
// 1 bit
// remain low for 1us, then go high for 3us
// nop block 1
NOP5;
asm volatile (";Setting line to high");
N64_PIND_HIGH;
// nop block 2
// we'll wait only 2us to sync up with both conditions
// at the bottom of the if statement
NOP30;
} else {
asm volatile (";Bit is a 0");
// 0 bit
// remain low for 3us, then go high for 1us
// nop block 3
NOP30; NOP5; NOP;
asm volatile (";Setting line to high");
N64_PIND_HIGH;
// wait for 1us
asm volatile ("; end of conditional branch, need to wait 1us more before next bit");
}
// end of the if, the line is high and needs to remain
// high for exactly 16 more cycles, regardless of the previous
// branch path
asm volatile (";finishing inner loop body");
--bits;
if (bits != 0) {
// nop block 4
// this block is why a for loop was impossible
NOP5; NOP; NOP; NOP; NOP;
// rotate bits
asm volatile (";rotating out bits");
*buffer <<= 1;
goto inner_loop;
} // fall out of inner loop
}
asm volatile (";continuing outer loop");
// In this case: the inner loop exits and the outer loop iterates,
// there are /exactly/ 16 cycles taken up by the necessary operations.
// So no nops are needed here (that was lucky!)
--length;
if (length != 0) {
++buffer;
goto outer_loop;
} // fall out of outer loop
}
// send a single stop (1) bit
// nop block 5
asm volatile ("nop\nnop\nnop\nnop\n");
N64_PIND_LOW;
// wait 1 us, 16 cycles, then raise the line
// 16-2=14
// nop block 6
NOP5; NOP5; NOP; NOP; NOP; NOP;
N64_PIND_HIGH;
}
void N64Controller::N64_PINB_send(char pincode, unsigned char *buffer, char length) {
char bits;
asm volatile (";Starting outer for loop");
outer_loop:
{
asm volatile (";Starting inner for loop");
bits=8;
inner_loop:
{
asm volatile (";Setting line to low");
N64_PINB_LOW;
asm volatile (";branching");
if (*buffer >> 7) {
asm volatile (";Bit is a 1");
NOP5;
asm volatile (";Setting line to high");
N64_PINB_HIGH;
NOP30;
} else {
asm volatile (";Bit is a 0");
NOP30; NOP5; NOP;
asm volatile (";Setting line to high");
N64_PINB_HIGH;
asm volatile ("; end of conditional branch, need to wait 1us more before next bit");
}
asm volatile (";finishing inner loop body");
--bits;
if (bits != 0) {
NOP5; NOP; NOP; NOP; NOP;
asm volatile (";rotating out bits");
*buffer <<= 1;
goto inner_loop;
}
}
asm volatile (";continuing outer loop");
--length;
if (length != 0) {
++buffer;
goto outer_loop;
}
}
NOP; NOP; NOP; NOP;
N64_PINB_LOW;
NOP5; NOP5; NOP; NOP; NOP; NOP;
N64_PINB_HIGH;
}
void N64Controller::N64_PIND_get(char pincode)
{
// listen for the expected 8 bytes of data back from the controller and
// blast it out to the N64_raw_dump array, one bit per byte for extra speed.
// Afterwards, call translate_raw_data() to interpret the raw data and pack
// it into the N64_status struct.
asm volatile (";Starting to listen");
unsigned char timeout;
char bitcount = 32;
char *bitbin = N64_raw_dump;
// Again, using gotos here to make the assembly more predictable and
// optimization easier (please don't kill me)
read_loop:
timeout = 0x3f;
// wait for line to go low
while (N64_PIND_QUERY) {
if (!--timeout)
return;
}
// wait approx 2us and poll the line
NOP30;
*bitbin = N64_PIND_QUERY;
++bitbin;
--bitcount;
if (bitcount == 0)
return;
// wait for line to go high again
// it may already be high, so this should just drop through
timeout = 0x3f;
while (!N64_PIND_QUERY) {
if (!--timeout)
return;
}
goto read_loop;
}
void N64Controller::N64_PINB_get(char pincode)
{
asm volatile (";Starting to listen");
unsigned char timeout;
char bitcount = 32;
char *bitbin = N64_raw_dump;
read_loop:
timeout = 0x3f;
while (N64_PINB_QUERY) {
if (!--timeout)
return;
}
NOP30;
*bitbin = N64_PINB_QUERY;
++bitbin;
--bitcount;
if (bitcount == 0)
return;
timeout = 0x3f;
while (!N64_PINB_QUERY) {
if (!--timeout)
return;
}
goto read_loop;
}
void N64Controller::print_N64_status() void N64Controller::print_N64_status()
{ {
// bits: A, B, Z, Start, Dup, Ddown, Dleft, Dright // bits: A, B, Z, Start, Dup, Ddown, Dleft, Dright
@ -386,15 +103,8 @@ void N64Controller::print_N64_status()
void N64Controller::update() { void N64Controller::update() {
unsigned char command[] = {0x01}; unsigned char command[] = {0x01};
if (n64_first_register) {
noInterrupts(); noInterrupts();
N64_PIND_send(n64_pincode, command, 1); interface->send(command, 1);
N64_PIND_get(n64_pincode); interface->get();
interrupts(); interrupts();
} else {
noInterrupts();
N64_PINB_send(n64_pincode, command, 1);
N64_PINB_get(n64_pincode);
interrupts();
}
} }

View File

@ -22,6 +22,8 @@
#ifndef N64Controller_h #ifndef N64Controller_h
#define N64Controller_h #define N64Controller_h
#include "N64Interface.h"
#define A_IDX 0 #define A_IDX 0
#define B_IDX 1 #define B_IDX 1
#define Z_IDX 2 #define Z_IDX 2
@ -46,47 +48,34 @@ class N64Controller {
void update(); // then update always and get button info void update(); // then update always and get button info
// consider to have a delay instead of // consider to have a delay instead of
// calling update all the time in a loop // calling update all the time in a loop
inline bool D_up() { return (N64_raw_dump[D_UP_IDX]) > 0; }; inline bool D_up() { return (interface->raw_dump[D_UP_IDX]) > 0; };
inline bool D_down() { return (N64_raw_dump[D_DOWN_IDX]) > 0; }; inline bool D_down() { return (interface->raw_dump[D_DOWN_IDX]) > 0; };
inline bool D_left() { return (N64_raw_dump[D_LEFT_IDX]) > 0; }; inline bool D_left() { return (interface->raw_dump[D_LEFT_IDX]) > 0; };
inline bool D_right() { return (N64_raw_dump[D_RIGHT_IDX]) > 0; }; inline bool D_right() { return (interface->raw_dump[D_RIGHT_IDX]) > 0; };
inline bool Start() { return (N64_raw_dump[START_IDX]) > 0; }; inline bool Start() { return (interface->raw_dump[START_IDX]) > 0; };
inline bool A() { return (N64_raw_dump[A_IDX]) > 0; }; inline bool A() { return (interface->raw_dump[A_IDX]) > 0; };
inline bool B() { return (N64_raw_dump[B_IDX]) > 0; }; inline bool B() { return (interface->raw_dump[B_IDX]) > 0; };
inline bool Z() { return (N64_raw_dump[Z_IDX]) > 0; }; inline bool Z() { return (interface->raw_dump[Z_IDX]) > 0; };
inline bool L() { return (N64_raw_dump[L_IDX]) > 0; }; inline bool L() { return (interface->raw_dump[L_IDX]) > 0; };
inline bool R() { return (N64_raw_dump[R_IDX]) > 0; }; inline bool R() { return (interface->raw_dump[R_IDX]) > 0; };
inline bool C_up() { return (N64_raw_dump[C_UP_IDX]) > 0; }; inline bool C_up() { return (interface->raw_dump[C_UP_IDX]) > 0; };
inline bool C_down() { return (N64_raw_dump[C_DOWN_IDX]) > 0; }; inline bool C_down() { return (interface->raw_dump[C_DOWN_IDX]) > 0; };
inline bool C_left() { return (N64_raw_dump[C_LEFT_IDX]) > 0; }; inline bool C_left() { return (interface->raw_dump[C_LEFT_IDX]) > 0; };
inline bool C_right() { return (N64_raw_dump[C_RIGHT_IDX]) > 0; }; inline bool C_right() { return (interface->raw_dump[C_RIGHT_IDX]) > 0; };
inline char axis_x() { return axis(X_IDX); }; inline char axis_x() { return axis(X_IDX); };
inline char axis_y() { return axis(Y_IDX); }; inline char axis_y() { return axis(Y_IDX); };
void print_N64_status(); void print_N64_status();
private: private:
void set_up(); N64Interface * interface;
char n64_PIN; // might also be set by constructor or begin()
char n64_pincode;
bool n64_first_register; // PIN0-7: DDRD PIN8-13: DDRB
void N64_init_PIND(char pincode);
void N64_PIND_send(char pincode, unsigned char *buffer, char length);
void N64_PIND_get(char pincode);
void N64_init_PINB(char pincode);
void N64_PINB_send(char pincode, unsigned char *buffer, char length);
void N64_PINB_get(char pincode);
inline char axis(int index) { inline char axis(int index) {
char value = 0; char value = 0;
for (char i=0; i<8; i++) { for (char i=0; i<8; i++) {
value |= N64_raw_dump[index+i] ? (0x80 >> i) : 0; value |= interface->raw_dump[index+i] ? (0x80 >> i) : 0;
} }
return value; return value;
} }
char N64_raw_dump[33]; // 1 received bit per byte
}; };
#endif #endif

View File

@ -0,0 +1,278 @@
#include "N64Interface.h"
#include <Arduino.h>
#include <pins_arduino.h>
#define NOP asm volatile ("nop")
#define NOP5 asm volatile ("nop\nnop\nnop\nnop\nnop\n")
#define NOP30 asm volatile ("nop\nnop\nnop\nnop\nnop\n" \
"nop\nnop\nnop\nnop\nnop\n" \
"nop\nnop\nnop\nnop\nnop\n" \
"nop\nnop\nnop\nnop\nnop\n" \
"nop\nnop\nnop\nnop\nnop\n" \
"nop\nnop\nnop\nnop\nnop\n")
// these two macros set arduino pin 2 to input or output, which with an
// external 1K pull-up resistor to the 3.3V rail, is like pulling it high or
// low. These operations translate to 1 op code, which takes 2 cycles
#define N64_PIND_HIGH DDRD &= ~pincode
#define N64_PIND_LOW DDRD |= pincode
#define N64_PIND_QUERY (PIND & pincode)
#define N64_PINB_HIGH DDRB &= ~pincode
#define N64_PINB_LOW DDRB |= pincode
#define N64_PINB_QUERY (PINB & pincode)
void N64Interface_PINB::init() {
unsigned char initialize = 0x00;
noInterrupts();
send(&initialize, 1);
int x;
for (x=0; x<64; x++) {
if (!N64_PINB_QUERY)
x = 0;
}
unsigned char command[] = {0x01};
send(command, 1);
get();
interrupts();
}
void N64Interface_PINB::send(unsigned char * buffer, char length) {
char bits;
asm volatile (";Starting outer for loop");
outer_loop:
{
asm volatile (";Starting inner for loop");
bits=8;
inner_loop:
{
asm volatile (";Setting line to low");
N64_PINB_LOW;
asm volatile (";branching");
if (*buffer >> 7) {
asm volatile (";Bit is a 1");
NOP5;
asm volatile (";Setting line to high");
N64_PINB_HIGH;
NOP30;
} else {
asm volatile (";Bit is a 0");
NOP30; NOP5; NOP;
asm volatile (";Setting line to high");
N64_PINB_HIGH;
asm volatile ("; end of conditional branch, need to wait 1us more before next bit");
}
asm volatile (";finishing inner loop body");
--bits;
if (bits != 0) {
NOP5; NOP; NOP; NOP; NOP;
asm volatile (";rotating out bits");
*buffer <<= 1;
goto inner_loop;
}
}
asm volatile (";continuing outer loop");
--length;
if (length != 0) {
++buffer;
goto outer_loop;
}
}
NOP; NOP; NOP; NOP;
N64_PINB_LOW;
NOP5; NOP5; NOP; NOP; NOP; NOP;
N64_PINB_HIGH;
}
void N64Interface_PINB::get() {
asm volatile (";Starting to listen");
unsigned char timeout;
char bitcount = 32;
char *bitbin = raw_dump;
read_loop:
timeout = 0x3f;
while (N64_PINB_QUERY) {
if (!--timeout)
return;
}
NOP30;
*bitbin = N64_PINB_QUERY;
++bitbin;
--bitcount;
if (bitcount == 0)
return;
timeout = 0x3f;
while (!N64_PINB_QUERY) {
if (!--timeout)
return;
}
goto read_loop;
}
void N64Interface_PIND::init() {
// Initialize the gamecube controller by sending it a null byte.
// This is unnecessary for a standard controller, but is required for the
// Wavebird.
unsigned char initialize = 0x00;
noInterrupts();
send(&initialize, 1);
// Stupid routine to wait for the gamecube controller to stop
// sending its response. We don't care what it is, but we
// can't start asking for status if it's still responding
int x;
for (x=0; x<64; x++) {
// make sure the line is idle for 64 iterations, should
// be plenty.
if (!N64_PIND_QUERY)
x = 0;
}
// Query for the gamecube controller's status. We do this
// to get the 0 point for the control stick.
unsigned char command[] = {0x01};
send(command, 1);
// read in data and dump it to N64_raw_dump
get();
interrupts();
}
/**
* This sends the given byte sequence to the controller
* length must be at least 1
* Oh, it destroys the buffer passed in as it writes it
*/
void N64Interface_PIND::send(unsigned char * buffer, char length) {
// Send these bytes
char bits;
// This routine is very carefully timed by examining the assembly output.
// Do not change any statements, it could throw the timings off
//
// We get 16 cycles per microsecond, which should be plenty, but we need to
// be conservative. Most assembly ops take 1 cycle, but a few take 2
//
// I use manually constructed for-loops out of gotos so I have more control
// over the outputted assembly. I can insert nops where it was impossible
// with a for loop
asm volatile (";Starting outer for loop");
outer_loop:
{
asm volatile (";Starting inner for loop");
bits=8;
inner_loop:
{
// Starting a bit, set the line low
asm volatile (";Setting line to low");
N64_PIND_LOW; // 1 op, 2 cycles
asm volatile (";branching");
if (*buffer >> 7) {
asm volatile (";Bit is a 1");
// 1 bit
// remain low for 1us, then go high for 3us
// nop block 1
NOP5;
asm volatile (";Setting line to high");
N64_PIND_HIGH;
// nop block 2
// we'll wait only 2us to sync up with both conditions
// at the bottom of the if statement
NOP30;
} else {
asm volatile (";Bit is a 0");
// 0 bit
// remain low for 3us, then go high for 1us
// nop block 3
NOP30; NOP5; NOP;
asm volatile (";Setting line to high");
N64_PIND_HIGH;
// wait for 1us
asm volatile ("; end of conditional branch, need to wait 1us more before next bit");
}
// end of the if, the line is high and needs to remain
// high for exactly 16 more cycles, regardless of the previous
// branch path
asm volatile (";finishing inner loop body");
--bits;
if (bits != 0) {
// nop block 4
// this block is why a for loop was impossible
NOP5; NOP; NOP; NOP; NOP;
// rotate bits
asm volatile (";rotating out bits");
*buffer <<= 1;
goto inner_loop;
} // fall out of inner loop
}
asm volatile (";continuing outer loop");
// In this case: the inner loop exits and the outer loop iterates,
// there are /exactly/ 16 cycles taken up by the necessary operations.
// So no nops are needed here (that was lucky!)
--length;
if (length != 0) {
++buffer;
goto outer_loop;
} // fall out of outer loop
}
// send a single stop (1) bit
// nop block 5
asm volatile ("nop\nnop\nnop\nnop\n");
N64_PIND_LOW;
// wait 1 us, 16 cycles, then raise the line
// 16-2=14
// nop block 6
NOP5; NOP5; NOP; NOP; NOP; NOP;
N64_PIND_HIGH;
}
void N64Interface_PIND::get() {
// listen for the expected 8 bytes of data back from the controller and
// blast it out to the N64_raw_dump array, one bit per byte for extra speed.
// Afterwards, call translate_raw_data() to interpret the raw data and pack
// it into the N64_status struct.
asm volatile (";Starting to listen");
unsigned char timeout;
char bitcount = 32;
char *bitbin = raw_dump;
// Again, using gotos here to make the assembly more predictable and
// optimization easier (please don't kill me)
read_loop:
timeout = 0x3f;
// wait for line to go low
while (N64_PIND_QUERY) {
if (!--timeout)
return;
}
// wait approx 2us and poll the line
NOP30;
*bitbin = N64_PIND_QUERY;
++bitbin;
--bitcount;
if (bitcount == 0)
return;
// wait for line to go high again
// it may already be high, so this should just drop through
timeout = 0x3f;
while (!N64_PIND_QUERY) {
if (!--timeout)
return;
}
goto read_loop;
}

View File

@ -0,0 +1,33 @@
#ifndef N64Interface_h
#define N64Interface_h
class N64Interface {
public:
virtual void init();
virtual void send(unsigned char * buffer, char length);
virtual void get();
char raw_dump[33];
protected:
N64Interface(unsigned char pincode) : pincode(pincode) {};
unsigned char pincode;
};
class N64Interface_PINB : public N64Interface {
public:
N64Interface_PINB(unsigned char pincode) : N64Interface(pincode) {};
virtual void init();
virtual void send(unsigned char * buffer, char length);
virtual void get();
};
class N64Interface_PIND : public N64Interface {
public:
N64Interface_PIND(unsigned char pincode) : N64Interface(pincode) {};
virtual void init();
virtual void send(unsigned char * buffer, char length);
virtual void get();
};
#endif