Shipwright/soh/src/code/z_olib.c
2024-04-26 00:31:28 +00:00

235 lines
5.4 KiB
C

#include "global.h"
/**
* Calculates the distances between `a` and `b`
*/
f32 OLib_Vec3fDist(Vec3f* a, Vec3f* b) {
f32 dx = a->x - b->x;
f32 dy = a->y - b->y;
f32 dz = a->z - b->z;
return sqrtf(SQ(dx) + SQ(dy) + SQ(dz));
}
/**
* Calculates the distances between `a` and `b`, and outputs the vector
* created by the difference into `dest`
*/
f32 OLib_Vec3fDistOutDiff(Vec3f* a, Vec3f* b, Vec3f* dest) {
dest->x = a->x - b->x;
dest->y = a->y - b->y;
dest->z = a->z - b->z;
return sqrtf(SQ(dest->x) + SQ(dest->y) + SQ(dest->z));
}
/**
* Calculates the distances on the xz plane between `a` and `b`
*/
f32 OLib_Vec3fDistXZ(Vec3f* a, Vec3f* b) {
return sqrtf(SQ(a->x - b->x) + SQ(a->z - b->z));
}
/**
* Clamps `val` to a maximum of -`min` as `val` approaches zero, and a minimum of
* `min` as `val` approaches zero
*/
f32 OLib_ClampMinDist(f32 val, f32 min) {
return (min <= fabsf(val)) ? val : ((val >= 0) ? min : -min);
}
/**
* Clamps `val` to a minimum of -`max` as `val` approaches -`max`, and a maximum of `max`
* as `val` approaches `max`
*/
f32 OLib_ClampMaxDist(f32 val, f32 max) {
return (fabsf(val) <= max) ? val : ((val >= 0) ? max : -max);
}
/**
* Takes the difference of points b and a, and creates a normal vector
*/
Vec3f* OLib_Vec3fDistNormalize(Vec3f* dest, Vec3f* a, Vec3f* b) {
Vec3f v1;
Vec3f v2;
f32 dist;
v1.x = b->x - a->x;
v1.y = b->y - a->y;
v1.z = b->z - a->z;
dist = OLib_ClampMinDist(sqrtf(SQ(v1.x) + SQ(v1.y) + SQ(v1.z)), 0.01f);
v2.x = v1.x / dist;
v2.y = v1.y / dist;
v2.z = v1.z / dist;
*dest = v2;
return dest;
}
/**
* Takes the spherical coordinate `sph`, and converts it into a x,y,z position
*/
Vec3f* OLib_VecSphToVec3f(Vec3f* dest, VecSph* sph) {
Vec3f v;
f32 sinPitch;
f32 cosPitch;
f32 sinYaw;
f32 cosYaw;
if (CVarGetInteger(CVAR_ENHANCEMENT("FixCameraDrift"), 0)) {
cosPitch = Math_AccurateCosS(sph->pitch);
cosYaw = Math_AccurateCosS(sph->yaw);
sinPitch = Math_AccurateSinS(sph->pitch);
sinYaw = Math_AccurateSinS(sph->yaw);
} else {
cosPitch = Math_CosS(sph->pitch);
cosYaw = Math_CosS(sph->yaw);
sinPitch = Math_SinS(sph->pitch);
sinYaw = Math_SinS(sph->yaw);
}
v.x = sph->r * sinPitch * sinYaw;
v.y = sph->r * cosPitch;
v.z = sph->r * sinPitch * cosYaw;
*dest = v;
return dest;
}
/**
* Takes the geographic point `sph` and converts it into a x,y,z position
*/
Vec3f* OLib_VecSphGeoToVec3f(Vec3f* dest, VecSph* sph) {
VecSph geo;
geo.r = sph->r;
geo.pitch = 0x3FFF - sph->pitch;
geo.yaw = sph->yaw;
return OLib_VecSphToVec3f(dest, &geo);
}
/**
* Takes the point `vec`, and converts it into a spherical coordinate
*/
VecSph* OLib_Vec3fToVecSph(VecSph* dest, Vec3f* vec) {
VecSph sph;
f32 distSquared = SQ(vec->x) + SQ(vec->z);
f32 dist = sqrtf(distSquared);
if ((dist == 0.0f) && (vec->y == 0.0f)) {
sph.pitch = 0;
} else {
sph.pitch = DEGF_TO_BINANG(RADF_TO_DEGF(Math_FAtan2F(dist, vec->y)));
}
sph.r = sqrtf(SQ(vec->y) + distSquared);
if ((vec->x == 0.0f) && (vec->z == 0.0f)) {
sph.yaw = 0;
} else {
sph.yaw = DEGF_TO_BINANG(RADF_TO_DEGF(Math_FAtan2F(vec->x, vec->z)));
}
*dest = sph;
return dest;
}
/**
* Takes the point `vec`, and converts it to a geographic coordinate
*/
VecSph* OLib_Vec3fToVecSphGeo(VecSph* dest, Vec3f* vec) {
VecSph sph;
OLib_Vec3fToVecSph(&sph, vec);
sph.pitch = 0x3FFF - sph.pitch;
*dest = sph;
return dest;
}
/**
* Takes the differences of positions `a` and `b`, and converts them to spherical coordinates
*/
VecSph* OLib_Vec3fDiffToVecSph(VecSph* dest, Vec3f* a, Vec3f* b) {
Vec3f sph;
sph.x = b->x - a->x;
sph.y = b->y - a->y;
sph.z = b->z - a->z;
return OLib_Vec3fToVecSph(dest, &sph);
}
/**
* Takes the difference of positions `a` and `b`, and converts them to geographic coordinates
*/
VecSph* OLib_Vec3fDiffToVecSphGeo(VecSph* dest, Vec3f* a, Vec3f* b) {
Vec3f sph;
sph.x = b->x - a->x;
sph.y = b->y - a->y;
sph.z = b->z - a->z;
return OLib_Vec3fToVecSphGeo(dest, &sph);
}
/**
* Gets the pitch/yaw of the vector formed from `b`-`a`, result is in radians
*/
Vec3f* OLib_Vec3fDiffRad(Vec3f* dest, Vec3f* a, Vec3f* b) {
Vec3f anglesRad;
anglesRad.x = Math_FAtan2F(b->z - a->z, b->y - a->y);
anglesRad.y = Math_FAtan2F(b->x - a->x, b->z - a->z);
anglesRad.z = 0;
*dest = anglesRad;
return dest;
}
/**
* Gets the pitch/yaw of the vector formed from `b`-`a`, result is in degrees
*/
Vec3f* OLib_Vec3fDiffDegF(Vec3f* dest, Vec3f* a, Vec3f* b) {
Vec3f anglesRad;
Vec3f anglesDegrees;
OLib_Vec3fDiffRad(&anglesRad, a, b);
anglesDegrees.x = RADF_TO_DEGF(anglesRad.x);
anglesDegrees.y = RADF_TO_DEGF(anglesRad.y);
anglesDegrees.z = 0.0f;
*dest = anglesDegrees;
return dest;
}
/**
* Gets the pitch/yaw of the vector formed from `b`-`a`, result is in binary degrees
*/
Vec3s* OLib_Vec3fDiffBinAng(Vec3s* dest, Vec3f* a, Vec3f* b) {
Vec3f anglesRad;
Vec3s anglesBinAng;
OLib_Vec3fDiffRad(&anglesRad, a, b);
anglesBinAng.x = DEGF_TO_BINANG(RADF_TO_DEGF(anglesRad.x));
anglesBinAng.y = DEGF_TO_BINANG(RADF_TO_DEGF(anglesRad.y));
anglesBinAng.z = 0.0f;
*dest = anglesBinAng;
return dest;
}