Shipwright/soh/soh/Enhancements/debugger/colViewer.cpp

711 lines
31 KiB
C++

#include "colViewer.h"
#include "../libultraship/ImGuiImpl.h"
#include "ImGuiHelpers.h"
#include "../../frame_interpolation.h"
#include <vector>
#include <string>
#include <cmath>
#include <Cvar.h>
extern "C" {
#include <z64.h>
#include "variables.h"
#include "functions.h"
#include "macros.h"
extern GlobalContext* gGlobalCtx;
}
enum class ColRenderSetting { Disabled, Solid, Transparent };
std::vector<std::string> ColRenderSettingNames = {
"Disabled",
"Solid",
"Transparent",
};
ImVec4 scene_col;
ImVec4 hookshot_col;
ImVec4 entrance_col;
ImVec4 specialSurface_col;
ImVec4 interactable_col;
ImVec4 slope_col;
ImVec4 void_col;
ImVec4 oc_col;
ImVec4 ac_col;
ImVec4 at_col;
ImVec4 waterbox_col;
static std::vector<Gfx> opaDl;
static std::vector<Gfx> xluDl;
static std::vector<Vtx> vtxDl;
static std::vector<Mtx> mtxDl;
// These DLs contain a cylinder/sphere model scaled to 128x (to have less error)
// The idea is to push a model view matrix, then draw the DL, to draw the shape somewhere with a certain size
static std::vector<Gfx> cylinderGfx;
static std::vector<Vtx> cylinderVtx;
static std::vector<Gfx> sphereGfx;
static std::vector<Vtx> sphereVtx;
// Draws the ImGui window for the collision viewer
void DrawColViewerWindow(bool& open) {
if (!open) {
CVar_SetS32("gCollisionViewerEnabled", 0);
return;
}
ImGui::SetNextWindowSize(ImVec2(520, 600), ImGuiCond_FirstUseEver);
if (!ImGui::Begin("Collision Viewer", &open, ImGuiWindowFlags_NoFocusOnAppearing)) {
ImGui::End();
return;
}
SohImGui::EnhancementCheckbox("Enabled", "gColViewerEnabled");
SohImGui::EnhancementCombo("Scene", "gColViewerScene", ColRenderSettingNames);
SohImGui::EnhancementCombo("Bg Actors", "gColViewerBgActors", ColRenderSettingNames);
SohImGui::EnhancementCombo("Col Check", "gColViewerColCheck", ColRenderSettingNames);
SohImGui::EnhancementCombo("Waterbox", "gColViewerWaterbox", ColRenderSettingNames);
SohImGui::EnhancementCheckbox("Apply as decal", "gColViewerDecal");
InsertHelpHoverText("Applies the collision as a decal display. This can be useful if there is z-fighting occuring "
"with the scene geometry, but can cause other artifacts.");
SohImGui::EnhancementCheckbox("Shaded", "gColViewerShaded");
InsertHelpHoverText("Applies the scene's shading to the collision display.");
// This has to be duplicated in both code paths due to the nature of ImGui::IsItemHovered()
const std::string colorHelpText = "View and change the colors used for collision display.";
if (ImGui::TreeNode("Colors")) {
InsertHelpHoverText(colorHelpText);
SohImGui::EnhancementColor("Normal", "gColViewerColorNormal", scene_col, ImVec4(255, 255, 255, 255), false);
SohImGui::EnhancementColor("Hookshot", "gColViewerColorHookshot", hookshot_col, ImVec4(128, 128, 255, 255),
false);
SohImGui::EnhancementColor("Entrance", "gColViewerColorEntrance", entrance_col, ImVec4(0, 255, 0, 255), false);
SohImGui::EnhancementColor("Special Surface (Grass/Sand/Etc)", "gColViewerColorSpecialSurface",
specialSurface_col, ImVec4(192, 255, 192, 255), false);
SohImGui::EnhancementColor("Interactable (Vines/Crawlspace/Etc)", "gColViewerColorInteractable",
interactable_col, ImVec4(192, 0, 192, 255), false);
SohImGui::EnhancementColor("Slope", "gColViewerColorSlope", slope_col, ImVec4(255, 255, 128, 255), false);
SohImGui::EnhancementColor("Void", "gColViewerColorVoid", void_col, ImVec4(255, 0, 0, 255), false);
SohImGui::EnhancementColor("OC", "gColViewerColorOC", oc_col, ImVec4(255, 255, 255, 255), false);
SohImGui::EnhancementColor("AC", "gColViewerColorAC", ac_col, ImVec4(0, 0, 255, 255), false);
SohImGui::EnhancementColor("AT", "gColViewerColorAT", at_col, ImVec4(255, 0, 0, 255), false);
SohImGui::EnhancementColor("Waterbox", "gColViewerColorWaterbox", waterbox_col, ImVec4(0, 0, 255, 255), false);
ImGui::TreePop();
} else {
InsertHelpHoverText(colorHelpText);
}
ImGui::End();
}
// Calculates the normal for a triangle at the 3 specified points
void CalcTriNorm(const Vec3f& v1, const Vec3f& v2, const Vec3f& v3, Vec3f& norm) {
norm.x = (v2.y - v1.y) * (v3.z - v1.z) - (v2.z - v1.z) * (v3.y - v1.y);
norm.y = (v2.z - v1.z) * (v3.x - v1.x) - (v2.x - v1.x) * (v3.z - v1.z);
norm.z = (v2.x - v1.x) * (v3.y - v1.y) - (v2.y - v1.y) * (v3.x - v1.x);
float norm_d = sqrtf(norm.x * norm.x + norm.y * norm.y + norm.z * norm.z);
if (norm_d != 0.f) {
norm.x *= 127.f / norm_d;
norm.y *= 127.f / norm_d;
norm.z *= 127.f / norm_d;
}
}
// Various macros used for creating verticies and rendering that aren't in gbi.h
#define G_CC_MODULATERGB_PRIM_ENVA PRIMITIVE, 0, SHADE, 0, 0, 0, 0, ENVIRONMENT
#define G_CC_PRIMITIVE_ENVA 0, 0, 0, PRIMITIVE, 0, 0, 0, ENVIRONMENT
#define qs105(n) ((int16_t)((n)*0x0020))
#define gdSPDefVtxN(x, y, z, s, t, nx, ny, nz, ca) \
{ \
.n = {.ob = { x, y, z }, .tc = { qs105(s), qs105(t) }, .n = { nx, ny, nz }, .a = ca } \
}
void CreateCylinderData() {
constexpr int32_t CYL_DIVS = 12;
cylinderGfx.reserve(5 + CYL_DIVS * 2);
cylinderVtx.reserve(2 + CYL_DIVS * 2);
cylinderVtx.push_back(gdSPDefVtxN(0, 0, 0, 0, 0, 0, -127, 0, 0xFF)); // Bottom center vertex
cylinderVtx.push_back(gdSPDefVtxN(0, 128, 0, 0, 0, 0, 127, 0, 0xFF)); // Top center vertex
// Create two rings of vertices
for (int i = 0; i < CYL_DIVS; ++i) {
short vtx_x = floorf(0.5f + cosf(2.f * M_PI * i / CYL_DIVS) * 128.f);
short vtx_z = floorf(0.5f - sinf(2.f * M_PI * i / CYL_DIVS) * 128.f);
signed char norm_x = cosf(2.f * M_PI * i / CYL_DIVS) * 127.f;
signed char norm_z = -sinf(2.f * M_PI * i / CYL_DIVS) * 127.f;
cylinderVtx.push_back(gdSPDefVtxN(vtx_x, 0, vtx_z, 0, 0, norm_x, 0, norm_z, 0xFF));
cylinderVtx.push_back(gdSPDefVtxN(vtx_x, 128, vtx_z, 0, 0, norm_x, 0, norm_z, 0xFF));
}
// Draw edges
cylinderGfx.push_back(gsSPSetGeometryMode(G_CULL_BACK | G_SHADING_SMOOTH));
cylinderGfx.push_back(gsSPVertex((uintptr_t)cylinderVtx.data(), 2 + CYL_DIVS * 2, 0));
for (int i = 0; i < CYL_DIVS; ++i) {
int p = (i + CYL_DIVS - 1) % CYL_DIVS;
int v[4] = {
2 + p * 2 + 0,
2 + i * 2 + 0,
2 + i * 2 + 1,
2 + p * 2 + 1,
};
cylinderGfx.push_back(gsSP2Triangles(v[0], v[1], v[2], 0, v[0], v[2], v[3], 0));
}
// Draw top & bottom
cylinderGfx.push_back(gsSPClearGeometryMode(G_SHADING_SMOOTH));
for (int i = 0; i < CYL_DIVS; ++i) {
int p = (i + CYL_DIVS - 1) % CYL_DIVS;
int v[4] = {
2 + p * 2 + 0,
2 + i * 2 + 0,
2 + i * 2 + 1,
2 + p * 2 + 1,
};
cylinderGfx.push_back(gsSP2Triangles(0, v[1], v[0], 0, 1, v[3], v[2], 0));
}
cylinderGfx.push_back(gsSPClearGeometryMode(G_CULL_BACK));
cylinderGfx.push_back(gsSPEndDisplayList());
}
// This subdivides a face into four tris by placing new verticies at the midpoints of the sides (Like a triforce!), then
// blowing up the verticies so they are on the unit sphere
void CreateSphereFace(std::vector<std::tuple<size_t, size_t, size_t>>& faces, int32_t v0Index, int32_t v1Index,
int32_t v2Index) {
size_t nextIndex = sphereVtx.size();
size_t v01Index = nextIndex;
size_t v12Index = nextIndex + 1;
size_t v20Index = nextIndex + 2;
faces.emplace_back(v0Index, v01Index, v20Index);
faces.emplace_back(v1Index, v12Index, v01Index);
faces.emplace_back(v2Index, v20Index, v12Index);
faces.emplace_back(v01Index, v12Index, v20Index);
const Vtx& v0 = sphereVtx[v0Index];
const Vtx& v1 = sphereVtx[v1Index];
const Vtx& v2 = sphereVtx[v2Index];
// Create 3 new verticies at the midpoints
Vec3f vs[3] = {
Vec3f{(v0.n.ob[0] + v1.n.ob[0]) / 2.0f, (v0.n.ob[1] + v1.n.ob[1]) / 2.0f, (v0.n.ob[2] + v1.n.ob[2]) / 2.0f},
Vec3f{(v1.n.ob[0] + v2.n.ob[0]) / 2.0f, (v1.n.ob[1] + v2.n.ob[1]) / 2.0f, (v1.n.ob[2] + v2.n.ob[2]) / 2.0f},
Vec3f{(v2.n.ob[0] + v0.n.ob[0]) / 2.0f, (v2.n.ob[1] + v0.n.ob[1]) / 2.0f, (v2.n.ob[2] + v0.n.ob[2]) / 2.0f}
};
// Normalize vertex positions so they are on the sphere
for (int32_t vAddIndex = 0; vAddIndex < 3; vAddIndex++) {
Vec3f& v = vs[vAddIndex];
float mag = sqrtf(v.x * v.x + v.y * v.y + v.z * v.z);
v.x /= mag;
v.y /= mag;
v.z /= mag;
sphereVtx.push_back(gdSPDefVtxN((short)(v.x * 127), (short)(v.y * 127), (short)(v.z * 127), 0, 0,
(signed char)(v.x * 127), (signed char)(v.y * 127), (signed char)(v.z * 127),
0xFF));
}
}
// Creates a sphere following the idea in here:
// http://blog.andreaskahler.com/2009/06/creating-icosphere-mesh-in-code.html Spcifically, create a icosahedron by
// realizing that the points can be placed on 3 rectangles that are on each unit plane. Then, subdividing each face.
void CreateSphereData() {
std::vector<Vec3f> base;
float d = (1.0f + sqrtf(5.0f)) / 2.0f;
// Create the 12 starting verticies, 4 on each rectangle
base.emplace_back(Vec3f({-1, d, 0}));
base.emplace_back(Vec3f({1, d, 0}));
base.emplace_back(Vec3f({-1, -d, 0}));
base.emplace_back(Vec3f({1, -d, 0}));
base.emplace_back(Vec3f({0, -1, d}));
base.emplace_back(Vec3f({0, 1, d}));
base.emplace_back(Vec3f({0, -1, -d}));
base.emplace_back(Vec3f({0, 1, -d}));
base.emplace_back(Vec3f({d, 0, -1}));
base.emplace_back(Vec3f({d, 0, 1}));
base.emplace_back(Vec3f({-d, 0, -1}));
base.emplace_back(Vec3f({-d, 0, 1}));
// Normalize verticies so they are on the unit sphere
for (Vec3f& v : base) {
float mag = sqrtf(v.x * v.x + v.y * v.y + v.z * v.z);
v.x /= mag;
v.y /= mag;
v.z /= mag;
sphereVtx.push_back(gdSPDefVtxN((short)(v.x * 128), (short)(v.y * 128), (short)(v.z * 128), 0, 0,
(signed char)(v.x * 127), (signed char)(v.y * 127), (signed char)(v.z * 127),
0xFF));
}
std::vector<std::tuple<size_t, size_t, size_t>> faces;
// Subdivide faces
CreateSphereFace(faces, 0, 11, 5);
CreateSphereFace(faces, 0, 5, 1);
CreateSphereFace(faces, 0, 1, 7);
CreateSphereFace(faces, 0, 7, 10);
CreateSphereFace(faces, 0, 10, 11);
CreateSphereFace(faces, 1, 5, 9);
CreateSphereFace(faces, 5, 11, 4);
CreateSphereFace(faces, 11, 10, 2);
CreateSphereFace(faces, 10, 7, 6);
CreateSphereFace(faces, 7, 1, 8);
CreateSphereFace(faces, 3, 9, 4);
CreateSphereFace(faces, 3, 4, 2);
CreateSphereFace(faces, 3, 2, 6);
CreateSphereFace(faces, 3, 6, 8);
CreateSphereFace(faces, 3, 8, 9);
CreateSphereFace(faces, 4, 9, 5);
CreateSphereFace(faces, 2, 4, 11);
CreateSphereFace(faces, 6, 2, 10);
CreateSphereFace(faces, 8, 6, 7);
CreateSphereFace(faces, 9, 8, 1);
size_t vtxStartIndex = sphereVtx.size();
sphereVtx.reserve(sphereVtx.size() + faces.size() * 3);
for (int32_t faceIndex = 0; faceIndex < faces.size(); faceIndex++) {
sphereVtx.push_back(sphereVtx[std::get<0>(faces[faceIndex])]);
sphereVtx.push_back(sphereVtx[std::get<1>(faces[faceIndex])]);
sphereVtx.push_back(sphereVtx[std::get<2>(faces[faceIndex])]);
sphereGfx.push_back(gsSPVertex((uintptr_t)(sphereVtx.data() + vtxStartIndex + faceIndex * 3), 3, 0));
sphereGfx.push_back(gsSP1Triangle(0, 1, 2, 0));
}
sphereGfx.push_back(gsSPEndDisplayList());
}
void InitColViewer() {
SohImGui::AddWindow("Developer Tools", "Collision Viewer", DrawColViewerWindow);
CreateCylinderData();
CreateSphereData();
}
// Initializes the display list for a ColRenderSetting
void InitGfx(std::vector<Gfx>& gfx, ColRenderSetting setting) {
uint32_t rm;
uint32_t blc1;
uint32_t blc2;
uint8_t alpha;
uint64_t cm;
uint32_t gm;
if (setting == ColRenderSetting::Transparent) {
rm = Z_CMP | IM_RD | CVG_DST_FULL | FORCE_BL;
blc1 = GBL_c1(G_BL_CLR_IN, G_BL_A_IN, G_BL_CLR_MEM, G_BL_1MA);
blc2 = GBL_c2(G_BL_CLR_IN, G_BL_A_IN, G_BL_CLR_MEM, G_BL_1MA);
alpha = 0x80;
} else {
rm = Z_CMP | Z_UPD | CVG_DST_CLAMP | FORCE_BL;
blc1 = GBL_c1(G_BL_CLR_IN, G_BL_0, G_BL_CLR_IN, G_BL_1);
blc2 = GBL_c2(G_BL_CLR_IN, G_BL_0, G_BL_CLR_IN, G_BL_1);
alpha = 0xFF;
}
if (CVar_GetS32("gColViewerDecal", 0) != 0) {
rm |= ZMODE_DEC;
} else if (setting == ColRenderSetting::Transparent) {
rm |= ZMODE_XLU;
} else {
rm |= ZMODE_OPA;
}
gfx.push_back(gsSPTexture(0, 0, 0, G_TX_RENDERTILE, G_OFF));
gfx.push_back(gsDPSetCycleType(G_CYC_1CYCLE));
gfx.push_back(gsDPSetRenderMode(rm | blc1, rm | blc2));
if (CVar_GetS32("gColViewerShaded", 0) != 0) {
gfx.push_back(gsDPSetCombineMode(G_CC_MODULATERGB_PRIM_ENVA, G_CC_MODULATERGB_PRIM_ENVA));
gfx.push_back(gsSPLoadGeometryMode(G_CULL_BACK | G_ZBUFFER | G_LIGHTING));
} else {
gfx.push_back(gsDPSetCombineMode(G_CC_PRIMITIVE_ENVA, G_CC_PRIMITIVE_ENVA));
gfx.push_back(gsSPLoadGeometryMode(G_ZBUFFER));
}
gfx.push_back(gsDPSetEnvColor(0xFF, 0xFF, 0xFF, alpha));
}
// Draws a dynapoly structure (scenes or Bg Actors)
void DrawDynapoly(std::vector<Gfx>& dl, CollisionHeader* col, int32_t bgId) {
uint32_t colorR = CVar_GetS32("gColViewerColorNormalR", 255);
uint32_t colorG = CVar_GetS32("gColViewerColorNormalG", 255);
uint32_t colorB = CVar_GetS32("gColViewerColorNormalB", 255);
uint32_t colorA = 255;
uint32_t lastColorR = colorR;
uint32_t lastColorG = colorG;
uint32_t lastColorB = colorB;
dl.push_back(gsDPSetPrimColor(0, 0, colorR, colorG, colorB, colorA));
// This keeps track of if we have processed a poly, but not drawn it yet so we can batch them.
// This saves several hundred commands in larger scenes
bool previousPoly = false;
for (int i = 0; i < col->numPolygons; i++) {
CollisionPoly* poly = &col->polyList[i];
if (SurfaceType_IsHookshotSurface(&gGlobalCtx->colCtx, poly, bgId)) {
colorR = CVar_GetS32("gColViewerColorHookshotR", 128);
colorG = CVar_GetS32("gColViewerColorHookshotG", 128);
colorB = CVar_GetS32("gColViewerColorHookshotB", 255);
} else if (func_80041D94(&gGlobalCtx->colCtx, poly, bgId) > 0x01) {
colorR = CVar_GetS32("gColViewerColorInteractableR", 192);
colorG = CVar_GetS32("gColViewerColorInteractableG", 0);
colorB = CVar_GetS32("gColViewerColorInteractableB", 192);
} else if (func_80041E80(&gGlobalCtx->colCtx, poly, bgId) == 0x0C) {
colorR = CVar_GetS32("gColViewerColorVoidR", 255);
colorG = CVar_GetS32("gColViewerColorVoidG", 0);
colorB = CVar_GetS32("gColViewerColorVoidB", 0);
} else if (SurfaceType_GetSceneExitIndex(&gGlobalCtx->colCtx, poly, bgId) ||
func_80041E80(&gGlobalCtx->colCtx, poly, bgId) == 0x05) {
colorR = CVar_GetS32("gColViewerColorEntranceR", 0);
colorG = CVar_GetS32("gColViewerColorEntranceG", 255);
colorB = CVar_GetS32("gColViewerColorEntranceB", 0);
} else if (func_80041D4C(&gGlobalCtx->colCtx, poly, bgId) != 0 ||
SurfaceType_IsWallDamage(&gGlobalCtx->colCtx, poly, bgId)) {
colorR = CVar_GetS32("gColViewerColorSpecialSurfaceR", 192);
colorG = CVar_GetS32("gColViewerColorSpecialSurfaceG", 255);
colorB = CVar_GetS32("gColViewerColorSpecialSurfaceB", 192);
} else if (SurfaceType_GetSlope(&gGlobalCtx->colCtx, poly, bgId) == 0x01) {
colorR = CVar_GetS32("gColViewerColorSlopeR", 255);
colorG = CVar_GetS32("gColViewerColorSlopeG", 255);
colorB = CVar_GetS32("gColViewerColorSlopeB", 128);
} else {
colorR = CVar_GetS32("gColViewerColorNormalR", 255);
colorG = CVar_GetS32("gColViewerColorNormalG", 255);
colorB = CVar_GetS32("gColViewerColorNormalB", 255);
}
if (colorR != lastColorR || colorG != lastColorG || colorB != lastColorB) {
// Color changed, flush previous poly
if (previousPoly) {
dl.push_back(gsSPVertex((uintptr_t)&vtxDl.at(vtxDl.size() - 3), 3, 0));
dl.push_back(gsSP1Triangle(0, 1, 2, 0));
previousPoly = false;
}
dl.push_back(gsDPSetPrimColor(0, 0, colorR, colorG, colorB, colorA));
}
lastColorR = colorR;
lastColorG = colorG;
lastColorB = colorB;
Vec3s* va = &col->vtxList[COLPOLY_VTX_INDEX(poly->flags_vIA)];
Vec3s* vb = &col->vtxList[COLPOLY_VTX_INDEX(poly->flags_vIB)];
Vec3s* vc = &col->vtxList[COLPOLY_VTX_INDEX(poly->vIC)];
vtxDl.push_back(gdSPDefVtxN(va->x, va->y, va->z, 0, 0, (signed char)(poly->normal.x / 0x100),
(signed char)(poly->normal.y / 0x100), (signed char)(poly->normal.z / 0x100),
0xFF));
vtxDl.push_back(gdSPDefVtxN(vb->x, vb->y, vb->z, 0, 0, (signed char)(poly->normal.x / 0x100),
(signed char)(poly->normal.y / 0x100), (signed char)(poly->normal.z / 0x100),
0xFF));
vtxDl.push_back(gdSPDefVtxN(vc->x, vc->y, vc->z, 0, 0, (signed char)(poly->normal.x / 0x100),
(signed char)(poly->normal.y / 0x100), (signed char)(poly->normal.z / 0x100),
0xFF));
if (previousPoly) {
dl.push_back(gsSPVertex((uintptr_t)&vtxDl.at(vtxDl.size() - 6), 6, 0));
dl.push_back(gsSP2Triangles(0, 1, 2, 0, 3, 4, 5, 0));
previousPoly = false;
} else {
previousPoly = true;
}
}
// Flush previous poly if this is the end and there's no more coming
if (previousPoly) {
dl.push_back(gsSPVertex((uintptr_t)&vtxDl.at(vtxDl.size() - 3), 3, 0));
dl.push_back(gsSP1Triangle(0, 1, 2, 0));
previousPoly = false;
}
}
// Draws the scene
void DrawSceneCollision() {
ColRenderSetting showSceneColSetting = (ColRenderSetting)CVar_GetS32("gColViewerScene", 0);
if (showSceneColSetting == ColRenderSetting::Disabled || CVar_GetS32("gColViewerEnabled", 0) == 0) {
return;
}
std::vector<Gfx>& dl = (showSceneColSetting == ColRenderSetting::Transparent) ? xluDl : opaDl;
InitGfx(dl, showSceneColSetting);
dl.push_back(gsSPMatrix(&gMtxClear, G_MTX_MODELVIEW | G_MTX_LOAD | G_MTX_NOPUSH));
DrawDynapoly(dl, gGlobalCtx->colCtx.colHeader, BGCHECK_SCENE);
}
// Draws all Bg Actors
void DrawBgActorCollision() {
ColRenderSetting showBgActorSetting = (ColRenderSetting)CVar_GetS32("gColViewerBgActors", 0);
if (showBgActorSetting == ColRenderSetting::Disabled || CVar_GetS32("gColViewerEnabled", 0) == 0) {
return;
}
std::vector<Gfx>& dl = (showBgActorSetting == ColRenderSetting::Transparent) ? xluDl : opaDl;
InitGfx(dl, showBgActorSetting);
dl.push_back(gsSPMatrix(&gMtxClear, G_MTX_MODELVIEW | G_MTX_LOAD | G_MTX_NOPUSH));
for (int32_t bgIndex = 0; bgIndex < BG_ACTOR_MAX; bgIndex++) {
if (gGlobalCtx->colCtx.dyna.bgActorFlags[bgIndex] & 1) {
BgActor& bg = gGlobalCtx->colCtx.dyna.bgActors[bgIndex];
Mtx m;
MtxF mf;
SkinMatrix_SetTranslateRotateYXZScale(&mf, bg.curTransform.scale.x, bg.curTransform.scale.y,
bg.curTransform.scale.z, bg.curTransform.rot.x, bg.curTransform.rot.y,
bg.curTransform.rot.z, bg.curTransform.pos.x, bg.curTransform.pos.y,
bg.curTransform.pos.z);
guMtxF2L(&mf, &m);
mtxDl.push_back(m);
dl.push_back(gsSPMatrix(&mtxDl.back(), G_MTX_MODELVIEW | G_MTX_LOAD | G_MTX_PUSH));
DrawDynapoly(dl, bg.colHeader, bgIndex);
dl.push_back(gsSPPopMatrix(G_MTX_MODELVIEW));
}
}
}
// Draws a quad
void DrawQuad(std::vector<Gfx>& dl, Vec3f& v0, Vec3f& v1, Vec3f& v2, Vec3f& v3) {
Vec3f norm;
CalcTriNorm(v0, v1, v2, norm);
vtxDl.push_back(gdSPDefVtxN((short)v0.x, (short)v0.y, (short)v0.z, 0, 0, (signed char)norm.x, (signed char)norm.y,
(signed char)norm.z, 0xFF));
vtxDl.push_back(gdSPDefVtxN((short)v1.x, (short)v1.y, (short)v1.z, 0, 0, (signed char)norm.x, (signed char)norm.y,
(signed char)norm.z, 0xFF));
vtxDl.push_back(gdSPDefVtxN((short)v2.x, (short)v2.y, (short)v2.z, 0, 0, (signed char)norm.x, (signed char)norm.y,
(signed char)norm.z, 0xFF));
vtxDl.push_back(gdSPDefVtxN((short)v3.x, (short)v3.y, (short)v3.z, 0, 0, (signed char)norm.x, (signed char)norm.y,
(signed char)norm.z, 0xFF));
dl.push_back(gsSPVertex((uintptr_t)&vtxDl.at(vtxDl.size() - 4), 4, 0));
dl.push_back(gsSP2Triangles(0, 1, 2, 0, 0, 2, 3, 0));
}
// Draws a list of Col Check objects
void DrawColCheckList(std::vector<Gfx>& dl, Collider** objects, int32_t count) {
for (int32_t colIndex = 0; colIndex < count; colIndex++) {
Collider* col = objects[colIndex];
switch (col->shape) {
case COLSHAPE_JNTSPH: {
ColliderJntSph* jntSph = (ColliderJntSph*)col;
for (int32_t sphereIndex = 0; sphereIndex < jntSph->count; sphereIndex++) {
ColliderJntSphElement* sph = &jntSph->elements[sphereIndex];
Mtx m;
MtxF mf;
SkinMatrix_SetTranslate(&mf, sph->dim.worldSphere.center.x, sph->dim.worldSphere.center.y,
sph->dim.worldSphere.center.z);
MtxF ms;
int32_t radius = sph->dim.worldSphere.radius == 0 ? 1 : sph->dim.worldSphere.radius;
SkinMatrix_SetScale(&ms, radius / 128.0f, radius / 128.0f, radius / 128.0f);
MtxF dest;
SkinMatrix_MtxFMtxFMult(&mf, &ms, &dest);
guMtxF2L(&dest, &m);
mtxDl.push_back(m);
dl.push_back(gsSPMatrix(&mtxDl.back(), G_MTX_MODELVIEW | G_MTX_LOAD | G_MTX_PUSH));
dl.push_back(gsSPDisplayList(sphereGfx.data()));
dl.push_back(gsSPPopMatrix(G_MTX_MODELVIEW));
}
} break;
case COLSHAPE_CYLINDER: {
ColliderCylinder* cyl = (ColliderCylinder*)col;
Mtx m;
MtxF mt;
SkinMatrix_SetTranslate(&mt, cyl->dim.pos.x, cyl->dim.pos.y + cyl->dim.yShift, cyl->dim.pos.z);
MtxF ms;
int32_t radius = cyl->dim.radius == 0 ? 1 : cyl->dim.radius;
SkinMatrix_SetScale(&ms, radius / 128.0f, cyl->dim.height / 128.0f, radius / 128.0f);
MtxF dest;
SkinMatrix_MtxFMtxFMult(&mt, &ms, &dest);
guMtxF2L(&dest, &m);
mtxDl.push_back(m);
dl.push_back(gsSPMatrix(&mtxDl.back(), G_MTX_MODELVIEW | G_MTX_LOAD | G_MTX_PUSH));
dl.push_back(gsSPDisplayList(cylinderGfx.data()));
dl.push_back(gsSPPopMatrix(G_MTX_MODELVIEW));
} break;
case COLSHAPE_TRIS: {
ColliderTris* tris = (ColliderTris*)col;
for (int32_t triIndex = 0; triIndex < tris->count; triIndex++) {
ColliderTrisElement* tri = &tris->elements[triIndex];
vtxDl.push_back(gdSPDefVtxN((short)tri->dim.vtx[0].x, (short)tri->dim.vtx[0].y,
(short)tri->dim.vtx[0].z, 0, 0, (signed char)tri->dim.plane.normal.x,
(signed char)tri->dim.plane.normal.y,
(signed char)tri->dim.plane.normal.z, 0xFF));
vtxDl.push_back(gdSPDefVtxN((short)tri->dim.vtx[1].x, (short)tri->dim.vtx[1].y,
(short)tri->dim.vtx[1].z, 0, 0, (signed char)tri->dim.plane.normal.x,
(signed char)tri->dim.plane.normal.y,
(signed char)tri->dim.plane.normal.z, 0xFF));
vtxDl.push_back(gdSPDefVtxN((short)tri->dim.vtx[2].x, (short)tri->dim.vtx[2].y,
(short)tri->dim.vtx[2].z, 0, 0, (signed char)tri->dim.plane.normal.x,
(signed char)tri->dim.plane.normal.y,
(signed char)tri->dim.plane.normal.z, 0xFF));
dl.push_back(gsSPVertex((uintptr_t)&vtxDl.at(vtxDl.size() - 3), 3, 0));
dl.push_back(gsSP1Triangle(0, 1, 2, 0));
}
} break;
case COLSHAPE_QUAD: {
ColliderQuad* quad = (ColliderQuad*)col;
DrawQuad(dl, quad->dim.quad[0], quad->dim.quad[2], quad->dim.quad[3], quad->dim.quad[1]);
} break;
default:
break;
}
}
}
// Draws all Col Check objects
void DrawColCheckCollision() {
ColRenderSetting showColCheckSetting = (ColRenderSetting)CVar_GetS32("gColViewerColCheck", 0);
if (showColCheckSetting == ColRenderSetting::Disabled || CVar_GetS32("gColViewerEnabled", 0) == 0) {
return;
}
std::vector<Gfx>& dl = (showColCheckSetting == ColRenderSetting::Transparent) ? xluDl : opaDl;
InitGfx(dl, showColCheckSetting);
dl.push_back(gsSPMatrix(&gMtxClear, G_MTX_MODELVIEW | G_MTX_LOAD | G_MTX_NOPUSH));
CollisionCheckContext& col = gGlobalCtx->colChkCtx;
dl.push_back(gsDPSetPrimColor(0, 0, CVar_GetS32("gColViewerColorOCR", 255), CVar_GetS32("gColViewerColorOCG", 255),
CVar_GetS32("gColViewerColorOCB", 255), 255));
DrawColCheckList(dl, col.colOC, col.colOCCount);
dl.push_back(gsDPSetPrimColor(0, 0, CVar_GetS32("gColViewerColorACR", 0), CVar_GetS32("gColViewerColorACG", 0),
CVar_GetS32("gColViewerColorACB", 255), 255));
DrawColCheckList(dl, col.colAC, col.colACCount);
dl.push_back(gsDPSetPrimColor(0, 0, CVar_GetS32("gColViewerColorATR", 255), CVar_GetS32("gColViewerColorATG", 0),
CVar_GetS32("gColViewerColorATB", 0), 255));
DrawColCheckList(dl, col.colAT, col.colATCount);
}
// Draws a waterbox
void DrawWaterbox(std::vector<Gfx>& dl, WaterBox* water, float water_max_depth = -4000.0f) {
// Skip waterboxes that would be disabled in current room
int32_t room = ((water->properties >> 13) & 0x3F);
if ((room != gGlobalCtx->roomCtx.curRoom.num) && (room != 0x3F)) {
return;
}
Vec3f vtx[] = {
{ water->xMin, water->ySurface, water->zMin + water->zLength },
{ water->xMin + water->xLength, water->ySurface, water->zMin + water->zLength },
{ water->xMin + water->xLength, water->ySurface, water->zMin },
{ water->xMin, water->ySurface, water->zMin },
{ water->xMin, water_max_depth, water->zMin + water->zLength },
{ water->xMin + water->xLength, water_max_depth, water->zMin + water->zLength },
{ water->xMin + water->xLength, water_max_depth, water->zMin },
{ water->xMin, water_max_depth, water->zMin },
};
DrawQuad(dl, vtx[0], vtx[1], vtx[2], vtx[3]);
DrawQuad(dl, vtx[0], vtx[3], vtx[7], vtx[4]);
DrawQuad(dl, vtx[1], vtx[0], vtx[4], vtx[5]);
DrawQuad(dl, vtx[2], vtx[1], vtx[5], vtx[6]);
DrawQuad(dl, vtx[3], vtx[2], vtx[6], vtx[7]);
}
extern "C" WaterBox zdWaterBox;
extern "C" f32 zdWaterBoxMinY;
// Draws all waterboxes
void DrawWaterboxList() {
ColRenderSetting showWaterboxSetting = (ColRenderSetting)CVar_GetS32("gColViewerWaterbox", 0);
if (showWaterboxSetting == ColRenderSetting::Disabled || CVar_GetS32("gColViewerEnabled", 0) == 0) {
return;
}
std::vector<Gfx>& dl = (showWaterboxSetting == ColRenderSetting::Transparent) ? xluDl : opaDl;
InitGfx(dl, showWaterboxSetting);
dl.push_back(gsSPMatrix(&gMtxClear, G_MTX_MODELVIEW | G_MTX_LOAD | G_MTX_NOPUSH));
dl.push_back(gsDPSetPrimColor(0, 0, CVar_GetS32("gColViewerColorWaterboxR", 0),
CVar_GetS32("gColViewerColorWaterboxG", 0),
CVar_GetS32("gColViewerColorWaterboxB", 255), 255));
CollisionHeader* col = gGlobalCtx->colCtx.colHeader;
for (int32_t waterboxIndex = 0; waterboxIndex < col->numWaterBoxes; waterboxIndex++) {
WaterBox* water = &col->waterBoxes[waterboxIndex];
DrawWaterbox(dl, water);
}
// Zora's Domain has a special, hard-coded waterbox with a bottom so you can go under the waterfall
if (gGlobalCtx->sceneNum == SCENE_SPOT07) {
DrawWaterbox(dl, &zdWaterBox, zdWaterBoxMinY);
}
}
// Resets a vector for the next frame and returns the capacity
template <typename T> size_t ResetVector(T& vec) {
size_t oldSize = vec.size();
vec.clear();
// Reserve slightly more space than last frame to account for variance (such as different amounts of bg actors)
vec.reserve(oldSize * 1.2);
return vec.capacity();
}
void DrawColViewer() {
if (gGlobalCtx == nullptr) {
return;
}
ResetVector(opaDl);
ResetVector(xluDl);
size_t vtxDlCapacity = ResetVector(vtxDl);
size_t mtxDlCapacity = ResetVector(mtxDl);
DrawSceneCollision();
DrawBgActorCollision();
DrawColCheckCollision();
DrawWaterboxList();
// Check if we used up more space than we reserved. If so, redo the drawing with our new sizes.
// This is because we resized the vectors while drawing, invalidating pointers to them.
// This only matters for the Vtx and Mtx vectors.
if ((vtxDl.size() > vtxDlCapacity) || (mtxDl.size() > mtxDlCapacity)) {
ResetVector(opaDl);
ResetVector(xluDl);
vtxDlCapacity = ResetVector(vtxDl);
mtxDlCapacity = ResetVector(mtxDl);
DrawSceneCollision();
DrawBgActorCollision();
DrawColCheckCollision();
DrawWaterboxList();
}
if ((vtxDl.size() > vtxDlCapacity) || (mtxDl.size() > mtxDlCapacity)) {
// If the sizes somehow changed between the two draws, we can't continue because we may be using invalid data
printf("Error drawing collision, vertex/matrix sizes didn't settle.\n");
return;
}
OPEN_DISPS(gGlobalCtx->state.gfxCtx);
opaDl.push_back(gsSPEndDisplayList());
gSPDisplayList(POLY_OPA_DISP++, opaDl.data());
xluDl.push_back(gsSPEndDisplayList());
gSPDisplayList(POLY_XLU_DISP++, xluDl.data());
CLOSE_DISPS(gGlobalCtx->state.gfxCtx);
}