Shipwright/soh/src/code/sys_matrix.c
Emill 45e5e5ca72
Experimental interpolation (#309)
* Experimental 60 fps

* Fix compile error

* Fix compile error

* Fix compile error
2022-05-13 18:43:55 -04:00

1056 lines
29 KiB
C

#include "global.h"
#include "soh/frame_interpolation.h"
// clang-format off
Mtx gMtxClear = {
65536, 0, 1, 0,
0, 65536, 0, 1,
0, 0, 0, 0,
0, 0, 0, 0,
};
MtxF gMtxFClear = {
1.0f, 0.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f, 0.0f,
0.0f, 0.0f, 1.0f, 0.0f,
0.0f, 0.0f, 0.0f, 1.0f,
};
// clang-format on
MtxF* sMatrixStack; // "Matrix_stack"
MtxF* sCurrentMatrix; // "Matrix_now"
void Matrix_Init(GameState* gameState) {
sCurrentMatrix = GameState_Alloc(gameState, 20 * sizeof(MtxF), "../sys_matrix.c", 153);
sMatrixStack = sCurrentMatrix;
}
void Matrix_Push(void) {
FrameInterpolation_RecordMatrixPush();
Matrix_MtxFCopy(sCurrentMatrix + 1, sCurrentMatrix);
sCurrentMatrix++;
}
void Matrix_Pop(void) {
FrameInterpolation_RecordMatrixPop();
sCurrentMatrix--;
ASSERT(sCurrentMatrix >= sMatrixStack, "Matrix_now >= Matrix_stack", "../sys_matrix.c", 176);
}
void Matrix_Get(MtxF* dest) {
Matrix_MtxFCopy(dest, sCurrentMatrix);
}
void Matrix_Put(MtxF* src) {
FrameInterpolation_RecordMatrixPut(src);
Matrix_MtxFCopy(sCurrentMatrix, src);
}
MtxF* Matrix_GetCurrent(void) {
return sCurrentMatrix;
}
void Matrix_Mult(MtxF* mf, u8 mode) {
FrameInterpolation_RecordMatrixMult(mf, mode);
MtxF* cmf = Matrix_GetCurrent();
if (mode == MTXMODE_APPLY) {
SkinMatrix_MtxFMtxFMult(cmf, mf, cmf);
} else {
Matrix_MtxFCopy(sCurrentMatrix, mf);
}
}
void Matrix_Translate(f32 x, f32 y, f32 z, u8 mode) {
FrameInterpolation_RecordMatrixTranslate(x, y, z, mode);
MtxF* cmf = sCurrentMatrix;
f32 tx;
f32 ty;
if (mode == MTXMODE_APPLY) {
tx = cmf->xx;
ty = cmf->xy;
cmf->xw += tx * x + ty * y + cmf->xz * z;
tx = cmf->yx;
ty = cmf->yy;
cmf->yw += tx * x + ty * y + cmf->yz * z;
tx = cmf->zx;
ty = cmf->zy;
cmf->zw += tx * x + ty * y + cmf->zz * z;
tx = cmf->wx;
ty = cmf->wy;
cmf->ww += tx * x + ty * y + cmf->wz * z;
} else {
SkinMatrix_SetTranslate(cmf, x, y, z);
}
}
void Matrix_Scale(f32 x, f32 y, f32 z, u8 mode) {
FrameInterpolation_RecordMatrixScale(x, y, z, mode);
MtxF* cmf = sCurrentMatrix;
if (mode == MTXMODE_APPLY) {
cmf->xx *= x;
cmf->yx *= x;
cmf->zx *= x;
cmf->xy *= y;
cmf->yy *= y;
cmf->zy *= y;
cmf->xz *= z;
cmf->yz *= z;
cmf->zz *= z;
cmf->wx *= x;
cmf->wy *= y;
cmf->wz *= z;
} else {
SkinMatrix_SetScale(cmf, x, y, z);
}
}
void Matrix_RotateX(f32 x, u8 mode) {
FrameInterpolation_RecordMatrixRotate1Coord(0, x, mode);
MtxF* cmf;
f32 sin;
f32 cos;
f32 temp1;
f32 temp2;
if (mode == MTXMODE_APPLY) {
if (x != 0) {
cmf = sCurrentMatrix;
sin = sinf(x);
cos = cosf(x);
temp1 = cmf->xy;
temp2 = cmf->xz;
cmf->xy = temp1 * cos + temp2 * sin;
cmf->xz = temp2 * cos - temp1 * sin;
temp1 = cmf->yy;
temp2 = cmf->yz;
cmf->yy = temp1 * cos + temp2 * sin;
cmf->yz = temp2 * cos - temp1 * sin;
temp1 = cmf->zy;
temp2 = cmf->zz;
cmf->zy = temp1 * cos + temp2 * sin;
cmf->zz = temp2 * cos - temp1 * sin;
temp1 = cmf->wy;
temp2 = cmf->wz;
cmf->wy = temp1 * cos + temp2 * sin;
cmf->wz = temp2 * cos - temp1 * sin;
}
} else {
cmf = sCurrentMatrix;
if (x != 0) {
sin = sinf(x);
cos = cosf(x);
} else {
sin = 0.0f;
cos = 1.0f;
}
cmf->yx = 0.0f;
cmf->zx = 0.0f;
cmf->wx = 0.0f;
cmf->xy = 0.0f;
cmf->wy = 0.0f;
cmf->xz = 0.0f;
cmf->wz = 0.0f;
cmf->xw = 0.0f;
cmf->yw = 0.0f;
cmf->zw = 0.0f;
cmf->xx = 1.0f;
cmf->ww = 1.0f;
cmf->yy = cos;
cmf->zz = cos;
cmf->zy = sin;
cmf->yz = -sin;
}
}
void Matrix_RotateY(f32 y, u8 mode) {
FrameInterpolation_RecordMatrixRotate1Coord(1, y, mode);
MtxF* cmf;
f32 sin;
f32 cos;
f32 temp1;
f32 temp2;
if (mode == MTXMODE_APPLY) {
if (y != 0) {
cmf = sCurrentMatrix;
sin = sinf(y);
cos = cosf(y);
temp1 = cmf->xx;
temp2 = cmf->xz;
cmf->xx = temp1 * cos - temp2 * sin;
cmf->xz = temp1 * sin + temp2 * cos;
temp1 = cmf->yx;
temp2 = cmf->yz;
cmf->yx = temp1 * cos - temp2 * sin;
cmf->yz = temp1 * sin + temp2 * cos;
temp1 = cmf->zx;
temp2 = cmf->zz;
cmf->zx = temp1 * cos - temp2 * sin;
cmf->zz = temp1 * sin + temp2 * cos;
temp1 = cmf->wx;
temp2 = cmf->wz;
cmf->wx = temp1 * cos - temp2 * sin;
cmf->wz = temp1 * sin + temp2 * cos;
}
} else {
cmf = sCurrentMatrix;
if (y != 0) {
sin = sinf(y);
cos = cosf(y);
} else {
sin = 0.0f;
cos = 1.0f;
}
cmf->yx = 0.0f;
cmf->wx = 0.0f;
cmf->xy = 0.0f;
cmf->zy = 0.0f;
cmf->wy = 0.0f;
cmf->yz = 0.0f;
cmf->wz = 0.0f;
cmf->xw = 0.0f;
cmf->yw = 0.0f;
cmf->zw = 0.0f;
cmf->yy = 1.0f;
cmf->ww = 1.0f;
cmf->xx = cos;
cmf->zz = cos;
cmf->zx = -sin;
cmf->xz = sin;
}
}
void Matrix_RotateZ(f32 z, u8 mode) {
FrameInterpolation_RecordMatrixRotate1Coord(2, z, mode);
MtxF* cmf;
f32 sin;
f32 cos;
f32 temp1;
f32 temp2;
if (mode == MTXMODE_APPLY) {
if (z != 0) {
cmf = sCurrentMatrix;
sin = sinf(z);
cos = cosf(z);
temp1 = cmf->xx;
temp2 = cmf->xy;
cmf->xx = temp1 * cos + temp2 * sin;
cmf->xy = temp2 * cos - temp1 * sin;
temp1 = cmf->yx;
temp2 = cmf->yy;
cmf->yx = temp1 * cos + temp2 * sin;
cmf->yy = temp2 * cos - temp1 * sin;
temp1 = cmf->zx;
temp2 = cmf->zy;
cmf->zx = temp1 * cos + temp2 * sin;
cmf->zy = temp2 * cos - temp1 * sin;
temp1 = cmf->wx;
temp2 = cmf->wy;
cmf->wx = temp1 * cos + temp2 * sin;
cmf->wy = temp2 * cos - temp1 * sin;
}
} else {
cmf = sCurrentMatrix;
if (z != 0) {
sin = sinf(z);
cos = cosf(z);
} else {
sin = 0.0f;
cos = 1.0f;
}
cmf->zx = 0.0f;
cmf->wx = 0.0f;
cmf->zy = 0.0f;
cmf->wy = 0.0f;
cmf->xz = 0.0f;
cmf->yz = 0.0f;
cmf->wz = 0.0f;
cmf->xw = 0.0f;
cmf->yw = 0.0f;
cmf->zw = 0.0f;
cmf->zz = 1.0f;
cmf->ww = 1.0f;
cmf->xx = cos;
cmf->yy = cos;
cmf->yx = sin;
cmf->xy = -sin;
}
}
/**
* Rotate using ZYX Tait-Bryan angles.
* This means a (column) vector is first rotated around X, then around Y, then around Z, then (if `mode` is
* `MTXMODE_APPLY`) gets transformed according to whatever the matrix was before adding the ZYX rotation.
* Original Name: Matrix_RotateXYZ, changed to reflect rotation order.
*/
void Matrix_RotateZYX(s16 x, s16 y, s16 z, u8 mode) {
FrameInterpolation_RecordMatrixRotateZYX(x, y, z, mode);
MtxF* cmf = sCurrentMatrix;
f32 temp1;
f32 temp2;
f32 sin;
f32 cos;
if (mode == MTXMODE_APPLY) {
sin = Math_SinS(z);
cos = Math_CosS(z);
temp1 = cmf->xx;
temp2 = cmf->xy;
cmf->xx = temp1 * cos + temp2 * sin;
cmf->xy = temp2 * cos - temp1 * sin;
temp1 = cmf->yx;
temp2 = cmf->yy;
cmf->yx = temp1 * cos + temp2 * sin;
cmf->yy = temp2 * cos - temp1 * sin;
temp1 = cmf->zx;
temp2 = cmf->zy;
cmf->zx = temp1 * cos + temp2 * sin;
cmf->zy = temp2 * cos - temp1 * sin;
temp1 = cmf->wx;
temp2 = cmf->wy;
cmf->wx = temp1 * cos + temp2 * sin;
cmf->wy = temp2 * cos - temp1 * sin;
if (y != 0) {
sin = Math_SinS(y);
cos = Math_CosS(y);
temp1 = cmf->xx;
temp2 = cmf->xz;
cmf->xx = temp1 * cos - temp2 * sin;
cmf->xz = temp1 * sin + temp2 * cos;
temp1 = cmf->yx;
temp2 = cmf->yz;
cmf->yx = temp1 * cos - temp2 * sin;
cmf->yz = temp1 * sin + temp2 * cos;
temp1 = cmf->zx;
temp2 = cmf->zz;
cmf->zx = temp1 * cos - temp2 * sin;
cmf->zz = temp1 * sin + temp2 * cos;
temp1 = cmf->wx;
temp2 = cmf->wz;
cmf->wx = temp1 * cos - temp2 * sin;
cmf->wz = temp1 * sin + temp2 * cos;
}
if (x != 0) {
sin = Math_SinS(x);
cos = Math_CosS(x);
temp1 = cmf->xy;
temp2 = cmf->xz;
cmf->xy = temp1 * cos + temp2 * sin;
cmf->xz = temp2 * cos - temp1 * sin;
temp1 = cmf->yy;
temp2 = cmf->yz;
cmf->yy = temp1 * cos + temp2 * sin;
cmf->yz = temp2 * cos - temp1 * sin;
temp1 = cmf->zy;
temp2 = cmf->zz;
cmf->zy = temp1 * cos + temp2 * sin;
cmf->zz = temp2 * cos - temp1 * sin;
temp1 = cmf->wy;
temp2 = cmf->wz;
cmf->wy = temp1 * cos + temp2 * sin;
cmf->wz = temp2 * cos - temp1 * sin;
}
} else {
SkinMatrix_SetRotateZYX(cmf, x, y, z);
}
}
/**
* Translate and rotate using ZYX Tait-Bryan angles.
* This means a (column) vector is first rotated around X, then around Y, then around Z, then translated, then gets
* transformed according to whatever the matrix was previously.
*/
void Matrix_TranslateRotateZYX(Vec3f* translation, Vec3s* rotation) {
FrameInterpolation_RecordMatrixTranslateRotateZYX(translation, rotation);
MtxF* cmf = sCurrentMatrix;
f32 sin = Math_SinS(rotation->z);
f32 cos = Math_CosS(rotation->z);
f32 temp1;
f32 temp2;
temp1 = cmf->xx;
temp2 = cmf->xy;
cmf->xw += temp1 * translation->x + temp2 * translation->y + cmf->xz * translation->z;
cmf->xx = temp1 * cos + temp2 * sin;
cmf->xy = temp2 * cos - temp1 * sin;
temp1 = cmf->yx;
temp2 = cmf->yy;
cmf->yw += temp1 * translation->x + temp2 * translation->y + cmf->yz * translation->z;
cmf->yx = temp1 * cos + temp2 * sin;
cmf->yy = temp2 * cos - temp1 * sin;
temp1 = cmf->zx;
temp2 = cmf->zy;
cmf->zw += temp1 * translation->x + temp2 * translation->y + cmf->zz * translation->z;
cmf->zx = temp1 * cos + temp2 * sin;
cmf->zy = temp2 * cos - temp1 * sin;
temp1 = cmf->wx;
temp2 = cmf->wy;
cmf->ww += temp1 * translation->x + temp2 * translation->y + cmf->wz * translation->z;
cmf->wx = temp1 * cos + temp2 * sin;
cmf->wy = temp2 * cos - temp1 * sin;
if (rotation->y != 0) {
sin = Math_SinS(rotation->y);
cos = Math_CosS(rotation->y);
temp1 = cmf->xx;
temp2 = cmf->xz;
cmf->xx = temp1 * cos - temp2 * sin;
cmf->xz = temp1 * sin + temp2 * cos;
temp1 = cmf->yx;
temp2 = cmf->yz;
cmf->yx = temp1 * cos - temp2 * sin;
cmf->yz = temp1 * sin + temp2 * cos;
temp1 = cmf->zx;
temp2 = cmf->zz;
cmf->zx = temp1 * cos - temp2 * sin;
cmf->zz = temp1 * sin + temp2 * cos;
temp1 = cmf->wx;
temp2 = cmf->wz;
cmf->wx = temp1 * cos - temp2 * sin;
cmf->wz = temp1 * sin + temp2 * cos;
}
if (rotation->x != 0) {
sin = Math_SinS(rotation->x);
cos = Math_CosS(rotation->x);
temp1 = cmf->xy;
temp2 = cmf->xz;
cmf->xy = temp1 * cos + temp2 * sin;
cmf->xz = temp2 * cos - temp1 * sin;
temp1 = cmf->yy;
temp2 = cmf->yz;
cmf->yy = temp1 * cos + temp2 * sin;
cmf->yz = temp2 * cos - temp1 * sin;
temp1 = cmf->zy;
temp2 = cmf->zz;
cmf->zy = temp1 * cos + temp2 * sin;
cmf->zz = temp2 * cos - temp1 * sin;
temp1 = cmf->wy;
temp2 = cmf->wz;
cmf->wy = temp1 * cos + temp2 * sin;
cmf->wz = temp2 * cos - temp1 * sin;
}
}
/**
* Set the current matrix to translate and rotate using YXZ Tait-Bryan angles.
* This means a (column) vector is first rotated around Z, then around X, then around Y, then translated.
*/
void Matrix_SetTranslateRotateYXZ(f32 translateX, f32 translateY, f32 translateZ, Vec3s* rot) {
MtxF* cmf = sCurrentMatrix;
f32 temp1 = Math_SinS(rot->y);
f32 temp2 = Math_CosS(rot->y);
f32 cos;
f32 sin;
cmf->xx = temp2;
cmf->zx = -temp1;
cmf->xw = translateX;
cmf->yw = translateY;
cmf->zw = translateZ;
cmf->wx = 0.0f;
cmf->wy = 0.0f;
cmf->wz = 0.0f;
cmf->ww = 1.0f;
if (rot->x != 0) {
sin = Math_SinS(rot->x);
cos = Math_CosS(rot->x);
cmf->zz = temp2 * cos;
cmf->zy = temp2 * sin;
cmf->xz = temp1 * cos;
cmf->xy = temp1 * sin;
cmf->yz = -sin;
cmf->yy = cos;
} else {
cmf->zz = temp2;
cmf->xz = temp1;
cmf->yz = 0.0f;
cmf->zy = 0.0f;
cmf->xy = 0.0f;
cmf->yy = 1.0f;
}
if (rot->z != 0) {
sin = Math_SinS(rot->z);
cos = Math_CosS(rot->z);
temp1 = cmf->xx;
temp2 = cmf->xy;
cmf->xx = temp1 * cos + temp2 * sin;
cmf->xy = temp2 * cos - temp1 * sin;
temp1 = cmf->zx;
temp2 = cmf->zy;
cmf->zx = temp1 * cos + temp2 * sin;
cmf->zy = temp2 * cos - temp1 * sin;
temp2 = cmf->yy;
cmf->yx = temp2 * sin;
cmf->yy = temp2 * cos;
} else {
cmf->yx = 0.0f;
}
FrameInterpolation_RecordMatrixSetTranslateRotateYXZ(translateX, translateY, translateZ, rot);
}
Mtx* Matrix_MtxFToMtx(MtxF* src, Mtx* dest) {
FrameInterpolation_RecordMatrixMtxFToMtx(src, dest);
guMtxF2L(src, dest);
return dest;
}
Mtx* Matrix_ToMtx(Mtx* dest, char* file, s32 line) {
FrameInterpolation_RecordMatrixToMtx(dest, file, line);
guMtxF2L(Matrix_CheckFloats(sCurrentMatrix, file, line), dest);
return dest;
//return Matrix_MtxFToMtx(Matrix_CheckFloats(sCurrentMatrix, file, line), dest);
}
Mtx* Matrix_NewMtx(GraphicsContext* gfxCtx, char* file, s32 line) {
return Matrix_ToMtx(Graph_Alloc(gfxCtx, sizeof(Mtx)), file, line);
}
Mtx* Matrix_MtxFToNewMtx(MtxF* src, GraphicsContext* gfxCtx) {
return Matrix_MtxFToMtx(src, Graph_Alloc(gfxCtx, sizeof(Mtx)));
}
void Matrix_MultVec3f(Vec3f* src, Vec3f* dest) {
MtxF* cmf = sCurrentMatrix;
dest->x = cmf->xw + (cmf->xx * src->x + cmf->xy * src->y + cmf->xz * src->z);
dest->y = cmf->yw + (cmf->yx * src->x + cmf->yy * src->y + cmf->yz * src->z);
dest->z = cmf->zw + (cmf->zx * src->x + cmf->zy * src->y + cmf->zz * src->z);
}
void Matrix_MtxFCopy(MtxF* dest, MtxF* src) {
dest->xx = src->xx;
dest->yx = src->yx;
dest->zx = src->zx;
dest->wx = src->wx;
dest->xy = src->xy;
dest->yy = src->yy;
dest->zy = src->zy;
dest->wy = src->wy;
dest->xx = src->xx;
dest->yx = src->yx;
dest->zx = src->zx;
dest->wx = src->wx;
dest->xy = src->xy;
dest->yy = src->yy;
dest->zy = src->zy;
dest->wy = src->wy;
dest->xz = src->xz;
dest->yz = src->yz;
dest->zz = src->zz;
dest->wz = src->wz;
dest->xw = src->xw;
dest->yw = src->yw;
dest->zw = src->zw;
dest->ww = src->ww;
dest->xz = src->xz;
dest->yz = src->yz;
dest->zz = src->zz;
dest->wz = src->wz;
dest->xw = src->xw;
dest->yw = src->yw;
dest->zw = src->zw;
dest->ww = src->ww;
}
void Matrix_MtxToMtxF(Mtx* src, MtxF* dest) {
guMtxL2F(dest, src);
}
void Matrix_MultVec3fExt(Vec3f* src, Vec3f* dest, MtxF* mf) {
dest->x = mf->xw + (mf->xx * src->x + mf->xy * src->y + mf->xz * src->z);
dest->y = mf->yw + (mf->yx * src->x + mf->yy * src->y + mf->yz * src->z);
dest->z = mf->zw + (mf->zx * src->x + mf->zy * src->y + mf->zz * src->z);
}
void Matrix_Transpose(MtxF* mf) {
f32 temp;
temp = mf->yx;
mf->yx = mf->xy;
mf->xy = temp;
temp = mf->zx;
mf->zx = mf->xz;
mf->xz = temp;
temp = mf->zy;
mf->zy = mf->yz;
mf->yz = temp;
}
/**
* Changes the 3x3 part of the current matrix to `mf` * S, where S is the scale in the current matrix.
*
* In details, S is a diagonal where each coefficient is the norm of the column in the 3x3 current matrix.
* The 3x3 part can then be written as R * S where R has its columns normalized.
* Since R is typically a rotation matrix, and the 3x3 part is changed from R * S to `mf` * S, this operation can be
* seen as replacing the R rotation with `mf`, hence the function name.
*/
void Matrix_ReplaceRotation(MtxF* mf) {
FrameInterpolation_RecordMatrixReplaceRotation(mf);
MtxF* cmf = sCurrentMatrix;
f32 acc;
f32 temp;
f32 curColNorm;
// compute the Euclidean norm of the first column of the current matrix
acc = cmf->xx;
acc *= acc;
temp = cmf->yx;
acc += SQ(temp);
temp = cmf->zx;
acc += SQ(temp);
curColNorm = sqrtf(acc);
cmf->xx = mf->xx * curColNorm;
cmf->yx = mf->yx * curColNorm;
cmf->zx = mf->zx * curColNorm;
// second column
acc = cmf->xy;
acc *= acc;
temp = cmf->yy;
acc += SQ(temp);
temp = cmf->zy;
acc += SQ(temp);
curColNorm = sqrtf(acc);
cmf->xy = mf->xy * curColNorm;
cmf->yy = mf->yy * curColNorm;
cmf->zy = mf->zy * curColNorm;
// third column
acc = cmf->xz;
acc *= acc;
temp = cmf->yz;
acc += SQ(temp);
temp = cmf->zz;
acc += SQ(temp);
curColNorm = sqrtf(acc);
cmf->xz = mf->xz * curColNorm;
cmf->yz = mf->yz * curColNorm;
cmf->zz = mf->zz * curColNorm;
}
/**
* Gets the rotation the specified matrix represents, using Tait-Bryan YXZ angles.
* The flag value doesn't matter for a rotation matrix. Not 0 does extra calculation.
*/
void Matrix_MtxFToYXZRotS(MtxF* mf, Vec3s* rotDest, s32 flag) {
f32 temp;
f32 temp2;
f32 temp3;
f32 temp4;
temp = mf->xz;
temp *= temp;
temp += SQ(mf->zz);
rotDest->x = Math_FAtan2F(-mf->yz, sqrtf(temp)) * (0x8000 / M_PI);
if ((rotDest->x == 0x4000) || (rotDest->x == -0x4000)) {
rotDest->z = 0;
rotDest->y = Math_FAtan2F(-mf->zx, mf->xx) * (0x8000 / M_PI);
} else {
rotDest->y = Math_FAtan2F(mf->xz, mf->zz) * (0x8000 / M_PI);
if (!flag) {
rotDest->z = Math_FAtan2F(mf->yx, mf->yy) * (0x8000 / M_PI);
} else {
temp = mf->xx;
temp2 = mf->zx;
temp3 = mf->zy;
temp *= temp;
temp += SQ(temp2);
temp2 = mf->yx;
temp += SQ(temp2);
/* temp = xx^2+zx^2+yx^2 == 1 for a rotation matrix */
temp = sqrtf(temp);
temp = temp2 / temp;
temp2 = mf->xy;
temp2 *= temp2;
temp2 += SQ(temp3);
temp3 = mf->yy;
temp2 += SQ(temp3);
/* temp2 = xy^2+zy^2+yy^2 == 1 for a rotation matrix */
temp2 = sqrtf(temp2);
temp2 = temp3 / temp2;
/* for a rotation matrix, temp == yx and temp2 == yy
* which is the same as in the !flag branch */
rotDest->z = Math_FAtan2F(temp, temp2) * (0x8000 / M_PI);
}
}
}
/**
* Gets the rotation the specified matrix represents, using Tait-Bryan ZYX angles.
* The flag value doesn't matter for a rotation matrix. Not 0 does extra calculation.
*/
void Matrix_MtxFToZYXRotS(MtxF* mf, Vec3s* rotDest, s32 flag) {
f32 temp;
f32 temp2;
f32 temp3;
f32 temp4;
temp = mf->xx;
temp *= temp;
temp += SQ(mf->yx);
rotDest->y = Math_FAtan2F(-mf->zx, sqrtf(temp)) * (0x8000 / M_PI);
if ((rotDest->y == 0x4000) || (rotDest->y == -0x4000)) {
rotDest->x = 0;
rotDest->z = Math_FAtan2F(-mf->xy, mf->yy) * (0x8000 / M_PI);
} else {
rotDest->z = Math_FAtan2F(mf->yx, mf->xx) * (0x8000 / M_PI);
if (!flag) {
rotDest->x = Math_FAtan2F(mf->zy, mf->zz) * (0x8000 / M_PI);
} else {
// see Matrix_MtxFToYXZRotS
temp = mf->xy;
temp2 = mf->yy;
temp3 = mf->yz;
temp *= temp;
temp += SQ(temp2);
temp2 = mf->zy;
temp += SQ(temp2);
temp = sqrtf(temp);
temp = temp2 / temp;
temp2 = mf->xz;
temp2 *= temp2;
temp2 += SQ(temp3);
temp3 = mf->zz;
temp2 += SQ(temp3);
temp2 = sqrtf(temp2);
temp2 = temp3 / temp2;
rotDest->x = Math_FAtan2F(temp, temp2) * (0x8000 / M_PI);
}
}
}
/*
* Rotate the matrix by `angle` radians around a unit vector `axis`.
* NB: `axis` is assumed to be a unit vector.
*/
void Matrix_RotateAxis(f32 angle, Vec3f* axis, u8 mode) {
FrameInterpolation_RecordMatrixRotateAxis(angle, axis, mode);
MtxF* cmf;
f32 sin;
f32 cos;
f32 rCos;
f32 temp1;
f32 temp2;
f32 temp3;
f32 temp4;
if (mode == MTXMODE_APPLY) {
if (angle != 0) {
cmf = sCurrentMatrix;
sin = sinf(angle);
cos = cosf(angle);
temp1 = cmf->xx;
temp2 = cmf->xy;
temp3 = cmf->xz;
temp4 = (axis->x * temp1 + axis->y * temp2 + axis->z * temp3) * (1.0f - cos);
cmf->xx = temp1 * cos + axis->x * temp4 + sin * (temp2 * axis->z - temp3 * axis->y);
cmf->xy = temp2 * cos + axis->y * temp4 + sin * (temp3 * axis->x - temp1 * axis->z);
cmf->xz = temp3 * cos + axis->z * temp4 + sin * (temp1 * axis->y - temp2 * axis->x);
temp1 = cmf->yx;
temp2 = cmf->yy;
temp3 = cmf->yz;
temp4 = (axis->x * temp1 + axis->y * temp2 + axis->z * temp3) * (1.0f - cos);
cmf->yx = temp1 * cos + axis->x * temp4 + sin * (temp2 * axis->z - temp3 * axis->y);
cmf->yy = temp2 * cos + axis->y * temp4 + sin * (temp3 * axis->x - temp1 * axis->z);
cmf->yz = temp3 * cos + axis->z * temp4 + sin * (temp1 * axis->y - temp2 * axis->x);
temp1 = cmf->zx;
temp2 = cmf->zy;
temp3 = cmf->zz;
temp4 = (axis->x * temp1 + axis->y * temp2 + axis->z * temp3) * (1.0f - cos);
cmf->zx = temp1 * cos + axis->x * temp4 + sin * (temp2 * axis->z - temp3 * axis->y);
cmf->zy = temp2 * cos + axis->y * temp4 + sin * (temp3 * axis->x - temp1 * axis->z);
cmf->zz = temp3 * cos + axis->z * temp4 + sin * (temp1 * axis->y - temp2 * axis->x);
}
} else {
cmf = sCurrentMatrix;
if (angle != 0) {
sin = sinf(angle);
cos = cosf(angle);
rCos = 1.0f - cos;
cmf->xx = axis->x * axis->x * rCos + cos;
cmf->yy = axis->y * axis->y * rCos + cos;
cmf->zz = axis->z * axis->z * rCos + cos;
if (0) {}
temp2 = axis->x * rCos * axis->y;
temp3 = axis->z * sin;
cmf->yx = temp2 + temp3;
cmf->xy = temp2 - temp3;
temp2 = axis->x * rCos * axis->z;
temp3 = axis->y * sin;
cmf->zx = temp2 - temp3;
cmf->xz = temp2 + temp3;
temp2 = axis->y * rCos * axis->z;
temp3 = axis->x * sin;
cmf->zy = temp2 + temp3;
cmf->yz = temp2 - temp3;
cmf->wx = cmf->wy = cmf->wz = cmf->xw = cmf->yw = cmf->zw = 0.0f;
cmf->ww = 1.0f;
} else {
cmf->yx = 0.0f;
cmf->zx = 0.0f;
cmf->wx = 0.0f;
cmf->xy = 0.0f;
cmf->zy = 0.0f;
cmf->wy = 0.0f;
cmf->xz = 0.0f;
cmf->yz = 0.0f;
cmf->wz = 0.0f;
cmf->xw = 0.0f;
cmf->yw = 0.0f;
cmf->zw = 0.0f;
cmf->xx = 1.0f;
cmf->yy = 1.0f;
cmf->zz = 1.0f;
cmf->ww = 1.0f;
}
}
}
MtxF* Matrix_CheckFloats(MtxF* mf, char* file, s32 line) {
s32 i, j;
for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++) {
if (!(-32768.0f <= mf->mf[i][j]) || !(mf->mf[i][j] < 32768.0f)) {
osSyncPrintf("%s %d: [%s] =\n"
"/ %12.6f %12.6f %12.6f %12.6f \\\n"
"| %12.6f %12.6f %12.6f %12.6f |\n"
"| %12.6f %12.6f %12.6f %12.6f |\n"
"\\ %12.6f %12.6f %12.6f %12.6f /\n",
file, line, "mf", mf->xx, mf->xy, mf->xz, mf->xw, mf->yx, mf->yy, mf->yz, mf->yw, mf->zx,
mf->zy, mf->zz, mf->zw, mf->wx, mf->wy, mf->wz, mf->ww);
//Fault_AddHungupAndCrash(file, line);
}
}
}
return mf;
}
void Matrix_SetTranslateUniformScaleMtxF(MtxF* mf, f32 scale, f32 translateX, f32 translateY, f32 translateZ) {
mf->yx = 0.0f;
mf->zx = 0.0f;
mf->wx = 0.0f;
mf->xy = 0.0f;
mf->zy = 0.0f;
mf->wy = 0.0f;
mf->xz = 0.0f;
mf->yz = 0.0f;
mf->wz = 0.0f;
mf->xx = scale;
mf->yy = scale;
mf->zz = scale;
mf->xw = translateX;
mf->yw = translateY;
mf->zw = translateZ;
mf->ww = 1.0f;
}
void Matrix_SetTranslateUniformScaleMtx(Mtx* mtx, f32 scale, f32 translateX, f32 translateY, f32 translateZ) {
MtxF mf;
Matrix_SetTranslateUniformScaleMtxF(&mf, scale, translateX, translateY, translateZ);
guMtxF2L(&mf, mtx);
}
void Matrix_SetTranslateUniformScaleMtx2(Mtx* mtx, f32 scale, f32 translateX, f32 translateY, f32 translateZ) {
u16* intPart = (u16*)&mtx->m[0][0];
u16* fracPart = (u16*)&mtx->m[2][0];
u32 fixedPoint;
fixedPoint = (s32)(scale * 0x10000);
fracPart[0] = fixedPoint & 0xFFFF;
intPart[0] = (fixedPoint >> 16) & 0xFFFF;
fixedPoint = (s32)(scale * 0x10000);
intPart[5] = (fixedPoint >> 16) & 0xFFFF;
fracPart[5] = fixedPoint & 0xFFFF;
fixedPoint = (s32)(scale * 0x10000);
intPart[10] = (fixedPoint >> 16) & 0xFFFF;
fracPart[10] = fixedPoint & 0xFFFF;
fixedPoint = (s32)(translateX * 0x10000);
intPart[12] = (fixedPoint >> 16) & 0xFFFF;
fracPart[12] = fixedPoint & 0xFFFF;
fixedPoint = (s32)(translateY * 0x10000);
intPart[13] = (fixedPoint >> 16) & 0xFFFF;
fracPart[13] = fixedPoint & 0xFFFF;
fixedPoint = (s32)(translateZ * 0x10000);
intPart[14] = (fixedPoint >> 16) & 0xFFFF;
fracPart[14] = fixedPoint & 0xFFFF;
intPart[1] = 0;
intPart[2] = 0;
intPart[3] = 0;
intPart[4] = 0;
intPart[6] = 0;
intPart[7] = 0;
intPart[8] = 0;
intPart[9] = 0;
intPart[11] = 0;
intPart[15] = 1;
fracPart[1] = 0;
fracPart[2] = 0;
fracPart[3] = 0;
fracPart[4] = 0;
fracPart[6] = 0;
fracPart[7] = 0;
fracPart[8] = 0;
fracPart[9] = 0;
fracPart[11] = 0;
fracPart[15] = 0;
}
void Matrix_SetTranslateScaleMtx1(Mtx* mtx, f32 scaleX, f32 scaleY, f32 scaleZ, f32 translateX, f32 translateY,
f32 translateZ) {
u16* intPart = (u16*)&mtx->m[0][0];
u16* fracPart = (u16*)&mtx->m[2][0];
u32 fixedPoint;
fixedPoint = (s32)(scaleX * 0x10000);
intPart[0] = (fixedPoint >> 16) & 0xFFFF;
fracPart[0] = fixedPoint & 0xFFFF;
fixedPoint = (s32)(scaleY * 0x10000);
intPart[5] = (fixedPoint >> 16) & 0xFFFF;
fracPart[5] = fixedPoint & 0xFFFF;
fixedPoint = (s32)(scaleZ * 0x10000);
intPart[10] = (fixedPoint >> 16) & 0xFFFF;
fracPart[10] = fixedPoint & 0xFFFF;
fixedPoint = (s32)(translateX * 0x10000);
intPart[12] = (fixedPoint >> 16) & 0xFFFF;
fracPart[12] = fixedPoint & 0xFFFF;
fixedPoint = (s32)(translateY * 0x10000);
intPart[13] = (fixedPoint >> 16) & 0xFFFF;
fracPart[13] = fixedPoint & 0xFFFF;
fixedPoint = (s32)(translateZ * 0x10000);
intPart[14] = (fixedPoint >> 16) & 0xFFFF;
fracPart[14] = fixedPoint & 0xFFFF;
intPart[1] = 0;
intPart[2] = 0;
intPart[3] = 0;
intPart[4] = 0;
intPart[6] = 0;
intPart[7] = 0;
intPart[8] = 0;
intPart[9] = 0;
intPart[11] = 0;
intPart[15] = 1;
fracPart[1] = 0;
fracPart[2] = 0;
fracPart[3] = 0;
fracPart[4] = 0;
fracPart[6] = 0;
fracPart[7] = 0;
fracPart[8] = 0;
fracPart[9] = 0;
fracPart[11] = 0;
fracPart[15] = 0;
}
void Matrix_SetTranslateScaleMtx2(Mtx* mtx, f32 scaleX, f32 scaleY, f32 scaleZ, f32 translateX, f32 translateY,
f32 translateZ) {
MtxF mtxf = { {
{ scaleX, 0, 0, 0 },
{ 0, scaleY, 0, 0 },
{ 0, 0, scaleZ, 0 },
{ translateX, translateY, translateZ, 1 }
} };
guMtxF2L(&mtxf, mtx);
}