Shipwright/OTRGui/libs/raylib/src/rtextures.c

4834 lines
198 KiB
C

/**********************************************************************************************
*
* rtextures - Basic functions to load and draw textures
*
* CONFIGURATION:
*
* #define SUPPORT_MODULE_RTEXTURES
* rtextures module is included in the build
*
* #define SUPPORT_FILEFORMAT_BMP
* #define SUPPORT_FILEFORMAT_PNG
* #define SUPPORT_FILEFORMAT_TGA
* #define SUPPORT_FILEFORMAT_JPG
* #define SUPPORT_FILEFORMAT_GIF
* #define SUPPORT_FILEFORMAT_QOI
* #define SUPPORT_FILEFORMAT_PSD
* #define SUPPORT_FILEFORMAT_PIC
* #define SUPPORT_FILEFORMAT_HDR
* #define SUPPORT_FILEFORMAT_DDS
* #define SUPPORT_FILEFORMAT_PKM
* #define SUPPORT_FILEFORMAT_KTX
* #define SUPPORT_FILEFORMAT_PVR
* #define SUPPORT_FILEFORMAT_ASTC
* Select desired fileformats to be supported for image data loading. Some of those formats are
* supported by default, to remove support, just comment unrequired #define in this module
*
* #define SUPPORT_IMAGE_EXPORT
* Support image export in multiple file formats
*
* #define SUPPORT_IMAGE_MANIPULATION
* Support multiple image editing functions to scale, adjust colors, flip, draw on images, crop...
* If not defined only three image editing functions supported: ImageFormat(), ImageAlphaMask(), ImageToPOT()
*
* #define SUPPORT_IMAGE_GENERATION
* Support procedural image generation functionality (gradient, spot, perlin-noise, cellular)
*
* DEPENDENCIES:
* stb_image - Multiple image formats loading (JPEG, PNG, BMP, TGA, PSD, GIF, PIC)
* NOTE: stb_image has been slightly modified to support Android platform.
* stb_image_resize - Multiple image resize algorythms
*
*
* LICENSE: zlib/libpng
*
* Copyright (c) 2013-2022 Ramon Santamaria (@raysan5)
*
* This software is provided "as-is", without any express or implied warranty. In no event
* will the authors be held liable for any damages arising from the use of this software.
*
* Permission is granted to anyone to use this software for any purpose, including commercial
* applications, and to alter it and redistribute it freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not claim that you
* wrote the original software. If you use this software in a product, an acknowledgment
* in the product documentation would be appreciated but is not required.
*
* 2. Altered source versions must be plainly marked as such, and must not be misrepresented
* as being the original software.
*
* 3. This notice may not be removed or altered from any source distribution.
*
**********************************************************************************************/
#include "raylib.h" // Declares module functions
// Check if config flags have been externally provided on compilation line
#if !defined(EXTERNAL_CONFIG_FLAGS)
#include "config.h" // Defines module configuration flags
#endif
#if defined(SUPPORT_MODULE_RTEXTURES)
#include "utils.h" // Required for: TRACELOG() and fopen() Android mapping
#include "rlgl.h" // OpenGL abstraction layer to OpenGL 1.1, 3.3 or ES2
#include <stdlib.h> // Required for: malloc(), free()
#include <string.h> // Required for: strlen() [Used in ImageTextEx()], strcmp() [Used in LoadImageFromMemory()]
#include <math.h> // Required for: fabsf()
#include <stdio.h> // Required for: sprintf() [Used in ExportImageAsCode()]
// Support only desired texture formats on stb_image
#if !defined(SUPPORT_FILEFORMAT_BMP)
#define STBI_NO_BMP
#endif
#if !defined(SUPPORT_FILEFORMAT_PNG)
#define STBI_NO_PNG
#endif
#if !defined(SUPPORT_FILEFORMAT_TGA)
#define STBI_NO_TGA
#endif
#if !defined(SUPPORT_FILEFORMAT_JPG)
#define STBI_NO_JPEG // Image format .jpg and .jpeg
#endif
#if !defined(SUPPORT_FILEFORMAT_PSD)
#define STBI_NO_PSD
#endif
#if !defined(SUPPORT_FILEFORMAT_GIF)
#define STBI_NO_GIF
#endif
#if !defined(SUPPORT_FILEFORMAT_PIC)
#define STBI_NO_PIC
#endif
#if !defined(SUPPORT_FILEFORMAT_HDR)
#define STBI_NO_HDR
#endif
// Image fileformats not supported by default
#define STBI_NO_PIC
#define STBI_NO_PNM // Image format .ppm and .pgm
#if defined(__TINYC__)
#define STBI_NO_SIMD
#endif
#if (defined(SUPPORT_FILEFORMAT_BMP) || \
defined(SUPPORT_FILEFORMAT_PNG) || \
defined(SUPPORT_FILEFORMAT_TGA) || \
defined(SUPPORT_FILEFORMAT_JPG) || \
defined(SUPPORT_FILEFORMAT_PSD) || \
defined(SUPPORT_FILEFORMAT_GIF) || \
defined(SUPPORT_FILEFORMAT_PIC) || \
defined(SUPPORT_FILEFORMAT_HDR))
#define STBI_MALLOC RL_MALLOC
#define STBI_FREE RL_FREE
#define STBI_REALLOC RL_REALLOC
#define STB_IMAGE_IMPLEMENTATION
#include "external/stb_image.h" // Required for: stbi_load_from_file()
// NOTE: Used to read image data (multiple formats support)
#endif
#if defined(SUPPORT_FILEFORMAT_QOI)
#define QOI_MALLOC RL_MALLOC
#define QOI_FREE RL_FREE
#define QOI_IMPLEMENTATION
#include "external/qoi.h"
#endif
#if defined(SUPPORT_IMAGE_EXPORT)
#define STBIW_MALLOC RL_MALLOC
#define STBIW_FREE RL_FREE
#define STBIW_REALLOC RL_REALLOC
#define STB_IMAGE_WRITE_IMPLEMENTATION
#include "external/stb_image_write.h" // Required for: stbi_write_*()
#endif
#if defined(SUPPORT_IMAGE_MANIPULATION)
#define STBIR_MALLOC(size,c) ((void)(c), RL_MALLOC(size))
#define STBIR_FREE(ptr,c) ((void)(c), RL_FREE(ptr))
#define STB_IMAGE_RESIZE_IMPLEMENTATION
#include "external/stb_image_resize.h" // Required for: stbir_resize_uint8() [ImageResize()]
#endif
//----------------------------------------------------------------------------------
// Defines and Macros
//----------------------------------------------------------------------------------
#ifndef PIXELFORMAT_UNCOMPRESSED_R5G5B5A1_ALPHA_THRESHOLD
#define PIXELFORMAT_UNCOMPRESSED_R5G5B5A1_ALPHA_THRESHOLD 50 // Threshold over 255 to set alpha as 0
#endif
//----------------------------------------------------------------------------------
// Types and Structures Definition
//----------------------------------------------------------------------------------
// ...
//----------------------------------------------------------------------------------
// Global Variables Definition
//----------------------------------------------------------------------------------
// It's lonely here...
//----------------------------------------------------------------------------------
// Other Modules Functions Declaration (required by text)
//----------------------------------------------------------------------------------
// ...
//----------------------------------------------------------------------------------
// Module specific Functions Declaration
//----------------------------------------------------------------------------------
#if defined(SUPPORT_FILEFORMAT_DDS)
static Image LoadDDS(const unsigned char *fileData, unsigned int fileSize); // Load DDS file data
#endif
#if defined(SUPPORT_FILEFORMAT_PKM)
static Image LoadPKM(const unsigned char *fileData, unsigned int fileSize); // Load PKM file data
#endif
#if defined(SUPPORT_FILEFORMAT_KTX)
static Image LoadKTX(const unsigned char *fileData, unsigned int fileSize); // Load KTX file data
static int SaveKTX(Image image, const char *fileName); // Save image data as KTX file
#endif
#if defined(SUPPORT_FILEFORMAT_PVR)
static Image LoadPVR(const unsigned char *fileData, unsigned int fileSize); // Load PVR file data
#endif
#if defined(SUPPORT_FILEFORMAT_ASTC)
static Image LoadASTC(const unsigned char *fileData, unsigned int fileSize); // Load ASTC file data
#endif
static Vector4 *LoadImageDataNormalized(Image image); // Load pixel data from image as Vector4 array (float normalized)
//----------------------------------------------------------------------------------
// Module Functions Definition
//----------------------------------------------------------------------------------
// Load image from file into CPU memory (RAM)
Image LoadImage(const char *fileName)
{
Image image = { 0 };
#if defined(SUPPORT_FILEFORMAT_PNG) || \
defined(SUPPORT_FILEFORMAT_BMP) || \
defined(SUPPORT_FILEFORMAT_TGA) || \
defined(SUPPORT_FILEFORMAT_JPG) || \
defined(SUPPORT_FILEFORMAT_GIF) || \
defined(SUPPORT_FILEFORMAT_PIC) || \
defined(SUPPORT_FILEFORMAT_HDR) || \
defined(SUPPORT_FILEFORMAT_PSD)
#define STBI_REQUIRED
#endif
// Loading file to memory
unsigned int fileSize = 0;
unsigned char *fileData = LoadFileData(fileName, &fileSize);
// Loading image from memory data
if (fileData != NULL) image = LoadImageFromMemory(GetFileExtension(fileName), fileData, fileSize);
RL_FREE(fileData);
return image;
}
// Load an image from RAW file data
Image LoadImageRaw(const char *fileName, int width, int height, int format, int headerSize)
{
Image image = { 0 };
unsigned int dataSize = 0;
unsigned char *fileData = LoadFileData(fileName, &dataSize);
if (fileData != NULL)
{
unsigned char *dataPtr = fileData;
unsigned int size = GetPixelDataSize(width, height, format);
if (headerSize > 0) dataPtr += headerSize;
image.data = RL_MALLOC(size); // Allocate required memory in bytes
memcpy(image.data, dataPtr, size); // Copy required data to image
image.width = width;
image.height = height;
image.mipmaps = 1;
image.format = format;
RL_FREE(fileData);
}
return image;
}
// Load animated image data
// - Image.data buffer includes all frames: [image#0][image#1][image#2][...]
// - Number of frames is returned through 'frames' parameter
// - All frames are returned in RGBA format
// - Frames delay data is discarded
Image LoadImageAnim(const char *fileName, int *frames)
{
Image image = { 0 };
int frameCount = 1;
#if defined(SUPPORT_FILEFORMAT_GIF)
if (IsFileExtension(fileName, ".gif"))
{
unsigned int dataSize = 0;
unsigned char *fileData = LoadFileData(fileName, &dataSize);
if (fileData != NULL)
{
int comp = 0;
int *delays = NULL;
image.data = stbi_load_gif_from_memory(fileData, dataSize, &delays, &image.width, &image.height, &frameCount, &comp, 4);
image.mipmaps = 1;
image.format = PIXELFORMAT_UNCOMPRESSED_R8G8B8A8;
RL_FREE(fileData);
RL_FREE(delays); // NOTE: Frames delays are discarded
}
}
#else
if (false) { }
#endif
else image = LoadImage(fileName);
// TODO: Support APNG animated images
*frames = frameCount;
return image;
}
// Load image from memory buffer, fileType refers to extension: i.e. ".png"
// WARNING: File extension must be provided in lower-case
Image LoadImageFromMemory(const char *fileType, const unsigned char *fileData, int dataSize)
{
Image image = { 0 };
#if defined(SUPPORT_FILEFORMAT_PNG)
if ((strcmp(fileType, ".png") == 0)
#else
if ((false)
#endif
#if defined(SUPPORT_FILEFORMAT_BMP)
|| (strcmp(fileType, ".bmp") == 0)
#endif
#if defined(SUPPORT_FILEFORMAT_TGA)
|| (strcmp(fileType, ".tga") == 0)
#endif
#if defined(SUPPORT_FILEFORMAT_JPG)
|| ((strcmp(fileType, ".jpg") == 0) || (strcmp(fileType, ".jpeg") == 0))
#endif
#if defined(SUPPORT_FILEFORMAT_GIF)
|| (strcmp(fileType, ".gif") == 0)
#endif
#if defined(SUPPORT_FILEFORMAT_PIC)
|| (strcmp(fileType, ".pic") == 0)
#endif
#if defined(SUPPORT_FILEFORMAT_PSD)
|| (strcmp(fileType, ".psd") == 0)
#endif
)
{
#if defined(STBI_REQUIRED)
// NOTE: Using stb_image to load images (Supports multiple image formats)
if (fileData != NULL)
{
int comp = 0;
image.data = stbi_load_from_memory(fileData, dataSize, &image.width, &image.height, &comp, 0);
if (image.data != NULL)
{
image.mipmaps = 1;
if (comp == 1) image.format = PIXELFORMAT_UNCOMPRESSED_GRAYSCALE;
else if (comp == 2) image.format = PIXELFORMAT_UNCOMPRESSED_GRAY_ALPHA;
else if (comp == 3) image.format = PIXELFORMAT_UNCOMPRESSED_R8G8B8;
else if (comp == 4) image.format = PIXELFORMAT_UNCOMPRESSED_R8G8B8A8;
}
}
#endif
}
#if defined(SUPPORT_FILEFORMAT_HDR)
else if (strcmp(fileType, ".hdr") == 0)
{
#if defined(STBI_REQUIRED)
if (fileData != NULL)
{
int comp = 0;
image.data = stbi_loadf_from_memory(fileData, dataSize, &image.width, &image.height, &comp, 0);
image.mipmaps = 1;
if (comp == 1) image.format = PIXELFORMAT_UNCOMPRESSED_R32;
else if (comp == 3) image.format = PIXELFORMAT_UNCOMPRESSED_R32G32B32;
else if (comp == 4) image.format = PIXELFORMAT_UNCOMPRESSED_R32G32B32A32;
else
{
TRACELOG(LOG_WARNING, "IMAGE: HDR file format not supported");
UnloadImage(image);
}
}
#endif
}
#endif
#if defined(SUPPORT_FILEFORMAT_QOI)
else if (strcmp(fileType, ".qoi") == 0)
{
qoi_desc desc = { 0 };
image.data = qoi_decode(fileData, dataSize, &desc, 4);
image.width = desc.width;
image.height = desc.height;
image.format = PIXELFORMAT_UNCOMPRESSED_R8G8B8A8;
image.mipmaps = 1;
}
#endif
#if defined(SUPPORT_FILEFORMAT_DDS)
else if (strcmp(fileType, ".dds") == 0) image = LoadDDS(fileData, dataSize);
#endif
#if defined(SUPPORT_FILEFORMAT_PKM)
else if (strcmp(fileType, ".pkm") == 0) image = LoadPKM(fileData, dataSize);
#endif
#if defined(SUPPORT_FILEFORMAT_KTX)
else if (strcmp(fileType, ".ktx") == 0) image = LoadKTX(fileData, dataSize);
#endif
#if defined(SUPPORT_FILEFORMAT_PVR)
else if (strcmp(fileType, ".pvr") == 0) image = LoadPVR(fileData, dataSize);
#endif
#if defined(SUPPORT_FILEFORMAT_ASTC)
else if (strcmp(fileType, ".astc") == 0) image = LoadASTC(fileData, dataSize);
#endif
else TRACELOG(LOG_WARNING, "IMAGE: Data format not supported");
if (image.data != NULL) TRACELOG(LOG_INFO, "IMAGE: Data loaded successfully (%ix%i | %s | %i mipmaps)", image.width, image.height, rlGetPixelFormatName(image.format), image.mipmaps);
else TRACELOG(LOG_WARNING, "IMAGE: Failed to load image data");
return image;
}
// Load image from GPU texture data
// NOTE: Compressed texture formats not supported
Image LoadImageFromTexture(Texture2D texture)
{
Image image = { 0 };
if (texture.format < PIXELFORMAT_COMPRESSED_DXT1_RGB)
{
image.data = rlReadTexturePixels(texture.id, texture.width, texture.height, texture.format);
if (image.data != NULL)
{
image.width = texture.width;
image.height = texture.height;
image.format = texture.format;
image.mipmaps = 1;
#if defined(GRAPHICS_API_OPENGL_ES2)
// NOTE: Data retrieved on OpenGL ES 2.0 should be RGBA,
// coming from FBO color buffer attachment, but it seems
// original texture format is retrieved on RPI...
image.format = PIXELFORMAT_UNCOMPRESSED_R8G8B8A8;
#endif
TRACELOG(LOG_INFO, "TEXTURE: [ID %i] Pixel data retrieved successfully", texture.id);
}
else TRACELOG(LOG_WARNING, "TEXTURE: [ID %i] Failed to retrieve pixel data", texture.id);
}
else TRACELOG(LOG_WARNING, "TEXTURE: [ID %i] Failed to retrieve compressed pixel data", texture.id);
return image;
}
// Load image from screen buffer and (screenshot)
Image LoadImageFromScreen(void)
{
Image image = { 0 };
image.width = GetScreenWidth();
image.height = GetScreenHeight();
image.mipmaps = 1;
image.format = PIXELFORMAT_UNCOMPRESSED_R8G8B8A8;
image.data = rlReadScreenPixels(image.width, image.height);
return image;
}
// Unload image from CPU memory (RAM)
void UnloadImage(Image image)
{
RL_FREE(image.data);
}
// Export image data to file
// NOTE: File format depends on fileName extension
bool ExportImage(Image image, const char *fileName)
{
int success = 0;
#if defined(SUPPORT_IMAGE_EXPORT)
int channels = 4;
bool allocatedData = false;
unsigned char *imgData = (unsigned char *)image.data;
if (image.format == PIXELFORMAT_UNCOMPRESSED_GRAYSCALE) channels = 1;
else if (image.format == PIXELFORMAT_UNCOMPRESSED_GRAY_ALPHA) channels = 2;
else if (image.format == PIXELFORMAT_UNCOMPRESSED_R8G8B8) channels = 3;
else if (image.format == PIXELFORMAT_UNCOMPRESSED_R8G8B8A8) channels = 4;
else
{
// NOTE: Getting Color array as RGBA unsigned char values
imgData = (unsigned char *)LoadImageColors(image);
allocatedData = true;
}
#if defined(SUPPORT_FILEFORMAT_PNG)
if (IsFileExtension(fileName, ".png"))
{
int dataSize = 0;
unsigned char *fileData = stbi_write_png_to_mem((const unsigned char *)imgData, image.width*channels, image.width, image.height, channels, &dataSize);
success = SaveFileData(fileName, fileData, dataSize);
RL_FREE(fileData);
}
#else
if (false) { }
#endif
#if defined(SUPPORT_FILEFORMAT_BMP)
else if (IsFileExtension(fileName, ".bmp")) success = stbi_write_bmp(fileName, image.width, image.height, channels, imgData);
#endif
#if defined(SUPPORT_FILEFORMAT_TGA)
else if (IsFileExtension(fileName, ".tga")) success = stbi_write_tga(fileName, image.width, image.height, channels, imgData);
#endif
#if defined(SUPPORT_FILEFORMAT_JPG)
else if (IsFileExtension(fileName, ".jpg") ||
IsFileExtension(fileName, ".jpeg")) success = stbi_write_jpg(fileName, image.width, image.height, channels, imgData, 90); // JPG quality: between 1 and 100
#endif
#if defined(SUPPORT_FILEFORMAT_QOI)
else if (IsFileExtension(fileName, ".qoi"))
{
channels = 0;
if (image.format == PIXELFORMAT_UNCOMPRESSED_R8G8B8) channels = 3;
else if (image.format == PIXELFORMAT_UNCOMPRESSED_R8G8B8A8) channels = 4;
else TRACELOG(LOG_WARNING, "IMAGE: Image pixel format must be R8G8B8 or R8G8B8A8");
if ((channels == 3) || (channels == 4))
{
qoi_desc desc = { 0 };
desc.width = image.width;
desc.height = image.height;
desc.channels = channels;
desc.colorspace = QOI_SRGB;
success = qoi_write(fileName, imgData, &desc);
}
}
#endif
#if defined(SUPPORT_FILEFORMAT_KTX)
else if (IsFileExtension(fileName, ".ktx")) success = SaveKTX(image, fileName);
#endif
else if (IsFileExtension(fileName, ".raw"))
{
// Export raw pixel data (without header)
// NOTE: It's up to the user to track image parameters
success = SaveFileData(fileName, image.data, GetPixelDataSize(image.width, image.height, image.format));
}
if (allocatedData) RL_FREE(imgData);
#endif // SUPPORT_IMAGE_EXPORT
if (success != 0) TRACELOG(LOG_INFO, "FILEIO: [%s] Image exported successfully", fileName);
else TRACELOG(LOG_WARNING, "FILEIO: [%s] Failed to export image", fileName);
return success;
}
// Export image as code file (.h) defining an array of bytes
bool ExportImageAsCode(Image image, const char *fileName)
{
bool success = false;
#if defined(SUPPORT_IMAGE_EXPORT)
#ifndef TEXT_BYTES_PER_LINE
#define TEXT_BYTES_PER_LINE 20
#endif
int dataSize = GetPixelDataSize(image.width, image.height, image.format);
// NOTE: Text data buffer size is estimated considering image data size in bytes
// and requiring 6 char bytes for every byte: "0x00, "
char *txtData = (char *)RL_CALLOC(dataSize*6 + 2000, sizeof(char));
int byteCount = 0;
byteCount += sprintf(txtData + byteCount, "////////////////////////////////////////////////////////////////////////////////////////\n");
byteCount += sprintf(txtData + byteCount, "// //\n");
byteCount += sprintf(txtData + byteCount, "// ImageAsCode exporter v1.0 - Image pixel data exported as an array of bytes //\n");
byteCount += sprintf(txtData + byteCount, "// //\n");
byteCount += sprintf(txtData + byteCount, "// more info and bugs-report: github.com/raysan5/raylib //\n");
byteCount += sprintf(txtData + byteCount, "// feedback and support: ray[at]raylib.com //\n");
byteCount += sprintf(txtData + byteCount, "// //\n");
byteCount += sprintf(txtData + byteCount, "// Copyright (c) 2018-2022 Ramon Santamaria (@raysan5) //\n");
byteCount += sprintf(txtData + byteCount, "// //\n");
byteCount += sprintf(txtData + byteCount, "////////////////////////////////////////////////////////////////////////////////////////\n\n");
// Get file name from path and convert variable name to uppercase
char varFileName[256] = { 0 };
strcpy(varFileName, GetFileNameWithoutExt(fileName));
for (int i = 0; varFileName[i] != '\0'; i++) if ((varFileName[i] >= 'a') && (varFileName[i] <= 'z')) { varFileName[i] = varFileName[i] - 32; }
// Add image information
byteCount += sprintf(txtData + byteCount, "// Image data information\n");
byteCount += sprintf(txtData + byteCount, "#define %s_WIDTH %i\n", varFileName, image.width);
byteCount += sprintf(txtData + byteCount, "#define %s_HEIGHT %i\n", varFileName, image.height);
byteCount += sprintf(txtData + byteCount, "#define %s_FORMAT %i // raylib internal pixel format\n\n", varFileName, image.format);
byteCount += sprintf(txtData + byteCount, "static unsigned char %s_DATA[%i] = { ", varFileName, dataSize);
for (int i = 0; i < dataSize - 1; i++) byteCount += sprintf(txtData + byteCount, ((i%TEXT_BYTES_PER_LINE == 0)? "0x%x,\n" : "0x%x, "), ((unsigned char *)image.data)[i]);
byteCount += sprintf(txtData + byteCount, "0x%x };\n", ((unsigned char *)image.data)[dataSize - 1]);
// NOTE: Text data size exported is determined by '\0' (NULL) character
success = SaveFileText(fileName, txtData);
RL_FREE(txtData);
#endif // SUPPORT_IMAGE_EXPORT
if (success != 0) TRACELOG(LOG_INFO, "FILEIO: [%s] Image as code exported successfully", fileName);
else TRACELOG(LOG_WARNING, "FILEIO: [%s] Failed to export image as code", fileName);
return success;
}
//------------------------------------------------------------------------------------
// Image generation functions
//------------------------------------------------------------------------------------
// Generate image: plain color
Image GenImageColor(int width, int height, Color color)
{
Color *pixels = (Color *)RL_CALLOC(width*height, sizeof(Color));
for (int i = 0; i < width*height; i++) pixels[i] = color;
Image image = {
.data = pixels,
.width = width,
.height = height,
.format = PIXELFORMAT_UNCOMPRESSED_R8G8B8A8,
.mipmaps = 1
};
return image;
}
#if defined(SUPPORT_IMAGE_GENERATION)
// Generate image: vertical gradient
Image GenImageGradientV(int width, int height, Color top, Color bottom)
{
Color *pixels = (Color *)RL_MALLOC(width*height*sizeof(Color));
for (int j = 0; j < height; j++)
{
float factor = (float)j/(float)height;
for (int i = 0; i < width; i++)
{
pixels[j*width + i].r = (int)((float)bottom.r*factor + (float)top.r*(1.f - factor));
pixels[j*width + i].g = (int)((float)bottom.g*factor + (float)top.g*(1.f - factor));
pixels[j*width + i].b = (int)((float)bottom.b*factor + (float)top.b*(1.f - factor));
pixels[j*width + i].a = (int)((float)bottom.a*factor + (float)top.a*(1.f - factor));
}
}
Image image = {
.data = pixels,
.width = width,
.height = height,
.format = PIXELFORMAT_UNCOMPRESSED_R8G8B8A8,
.mipmaps = 1
};
return image;
}
// Generate image: horizontal gradient
Image GenImageGradientH(int width, int height, Color left, Color right)
{
Color *pixels = (Color *)RL_MALLOC(width*height*sizeof(Color));
for (int i = 0; i < width; i++)
{
float factor = (float)i/(float)width;
for (int j = 0; j < height; j++)
{
pixels[j*width + i].r = (int)((float)right.r*factor + (float)left.r*(1.f - factor));
pixels[j*width + i].g = (int)((float)right.g*factor + (float)left.g*(1.f - factor));
pixels[j*width + i].b = (int)((float)right.b*factor + (float)left.b*(1.f - factor));
pixels[j*width + i].a = (int)((float)right.a*factor + (float)left.a*(1.f - factor));
}
}
Image image = {
.data = pixels,
.width = width,
.height = height,
.format = PIXELFORMAT_UNCOMPRESSED_R8G8B8A8,
.mipmaps = 1
};
return image;
}
// Generate image: radial gradient
Image GenImageGradientRadial(int width, int height, float density, Color inner, Color outer)
{
Color *pixels = (Color *)RL_MALLOC(width*height*sizeof(Color));
float radius = (width < height)? (float)width/2.0f : (float)height/2.0f;
float centerX = (float)width/2.0f;
float centerY = (float)height/2.0f;
for (int y = 0; y < height; y++)
{
for (int x = 0; x < width; x++)
{
float dist = hypotf((float)x - centerX, (float)y - centerY);
float factor = (dist - radius*density)/(radius*(1.0f - density));
factor = (float)fmax(factor, 0.0f);
factor = (float)fmin(factor, 1.f); // dist can be bigger than radius so we have to check
pixels[y*width + x].r = (int)((float)outer.r*factor + (float)inner.r*(1.0f - factor));
pixels[y*width + x].g = (int)((float)outer.g*factor + (float)inner.g*(1.0f - factor));
pixels[y*width + x].b = (int)((float)outer.b*factor + (float)inner.b*(1.0f - factor));
pixels[y*width + x].a = (int)((float)outer.a*factor + (float)inner.a*(1.0f - factor));
}
}
Image image = {
.data = pixels,
.width = width,
.height = height,
.format = PIXELFORMAT_UNCOMPRESSED_R8G8B8A8,
.mipmaps = 1
};
return image;
}
// Generate image: checked
Image GenImageChecked(int width, int height, int checksX, int checksY, Color col1, Color col2)
{
Color *pixels = (Color *)RL_MALLOC(width*height*sizeof(Color));
for (int y = 0; y < height; y++)
{
for (int x = 0; x < width; x++)
{
if ((x/checksX + y/checksY)%2 == 0) pixels[y*width + x] = col1;
else pixels[y*width + x] = col2;
}
}
Image image = {
.data = pixels,
.width = width,
.height = height,
.format = PIXELFORMAT_UNCOMPRESSED_R8G8B8A8,
.mipmaps = 1
};
return image;
}
// Generate image: white noise
Image GenImageWhiteNoise(int width, int height, float factor)
{
Color *pixels = (Color *)RL_MALLOC(width*height*sizeof(Color));
for (int i = 0; i < width*height; i++)
{
if (GetRandomValue(0, 99) < (int)(factor*100.0f)) pixels[i] = WHITE;
else pixels[i] = BLACK;
}
Image image = {
.data = pixels,
.width = width,
.height = height,
.format = PIXELFORMAT_UNCOMPRESSED_R8G8B8A8,
.mipmaps = 1
};
return image;
}
// Generate image: cellular algorithm. Bigger tileSize means bigger cells
Image GenImageCellular(int width, int height, int tileSize)
{
Color *pixels = (Color *)RL_MALLOC(width*height*sizeof(Color));
int seedsPerRow = width/tileSize;
int seedsPerCol = height/tileSize;
int seedCount = seedsPerRow*seedsPerCol;
Vector2 *seeds = (Vector2 *)RL_MALLOC(seedCount*sizeof(Vector2));
for (int i = 0; i < seedCount; i++)
{
int y = (i/seedsPerRow)*tileSize + GetRandomValue(0, tileSize - 1);
int x = (i%seedsPerRow)*tileSize + GetRandomValue(0, tileSize - 1);
seeds[i] = (Vector2){ (float)x, (float)y };
}
for (int y = 0; y < height; y++)
{
int tileY = y/tileSize;
for (int x = 0; x < width; x++)
{
int tileX = x/tileSize;
float minDistance = 65536.0f; //(float)strtod("Inf", NULL);
// Check all adjacent tiles
for (int i = -1; i < 2; i++)
{
if ((tileX + i < 0) || (tileX + i >= seedsPerRow)) continue;
for (int j = -1; j < 2; j++)
{
if ((tileY + j < 0) || (tileY + j >= seedsPerCol)) continue;
Vector2 neighborSeed = seeds[(tileY + j)*seedsPerRow + tileX + i];
float dist = (float)hypot(x - (int)neighborSeed.x, y - (int)neighborSeed.y);
minDistance = (float)fmin(minDistance, dist);
}
}
// I made this up but it seems to give good results at all tile sizes
int intensity = (int)(minDistance*256.0f/tileSize);
if (intensity > 255) intensity = 255;
pixels[y*width + x] = (Color){ intensity, intensity, intensity, 255 };
}
}
RL_FREE(seeds);
Image image = {
.data = pixels,
.width = width,
.height = height,
.format = PIXELFORMAT_UNCOMPRESSED_R8G8B8A8,
.mipmaps = 1
};
return image;
}
#endif // SUPPORT_IMAGE_GENERATION
//------------------------------------------------------------------------------------
// Image manipulation functions
//------------------------------------------------------------------------------------
// Copy an image to a new image
Image ImageCopy(Image image)
{
Image newImage = { 0 };
int width = image.width;
int height = image.height;
int size = 0;
for (int i = 0; i < image.mipmaps; i++)
{
size += GetPixelDataSize(width, height, image.format);
width /= 2;
height /= 2;
// Security check for NPOT textures
if (width < 1) width = 1;
if (height < 1) height = 1;
}
newImage.data = RL_MALLOC(size);
if (newImage.data != NULL)
{
// NOTE: Size must be provided in bytes
memcpy(newImage.data, image.data, size);
newImage.width = image.width;
newImage.height = image.height;
newImage.mipmaps = image.mipmaps;
newImage.format = image.format;
}
return newImage;
}
// Create an image from another image piece
Image ImageFromImage(Image image, Rectangle rec)
{
Image result = { 0 };
int bytesPerPixel = GetPixelDataSize(1, 1, image.format);
result.width = (int)rec.width;
result.height = (int)rec.height;
result.data = RL_CALLOC((int)(rec.width*rec.height)*bytesPerPixel, 1);
result.format = image.format;
result.mipmaps = 1;
for (int y = 0; y < rec.height; y++)
{
memcpy(((unsigned char *)result.data) + y*(int)rec.width*bytesPerPixel, ((unsigned char *)image.data) + ((y + (int)rec.y)*image.width + (int)rec.x)*bytesPerPixel, (int)rec.width*bytesPerPixel);
}
return result;
}
// Crop an image to area defined by a rectangle
// NOTE: Security checks are performed in case rectangle goes out of bounds
void ImageCrop(Image *image, Rectangle crop)
{
// Security check to avoid program crash
if ((image->data == NULL) || (image->width == 0) || (image->height == 0)) return;
// Security checks to validate crop rectangle
if (crop.x < 0) { crop.width += crop.x; crop.x = 0; }
if (crop.y < 0) { crop.height += crop.y; crop.y = 0; }
if ((crop.x + crop.width) > image->width) crop.width = image->width - crop.x;
if ((crop.y + crop.height) > image->height) crop.height = image->height - crop.y;
if ((crop.x > image->width) || (crop.y > image->height))
{
TRACELOG(LOG_WARNING, "IMAGE: Failed to crop, rectangle out of bounds");
return;
}
if (image->mipmaps > 1) TRACELOG(LOG_WARNING, "Image manipulation only applied to base mipmap level");
if (image->format >= PIXELFORMAT_COMPRESSED_DXT1_RGB) TRACELOG(LOG_WARNING, "Image manipulation not supported for compressed formats");
else
{
int bytesPerPixel = GetPixelDataSize(1, 1, image->format);
unsigned char *croppedData = (unsigned char *)RL_MALLOC((int)(crop.width*crop.height)*bytesPerPixel);
// OPTION 1: Move cropped data line-by-line
for (int y = (int)crop.y, offsetSize = 0; y < (int)(crop.y + crop.height); y++)
{
memcpy(croppedData + offsetSize, ((unsigned char *)image->data) + (y*image->width + (int)crop.x)*bytesPerPixel, (int)crop.width*bytesPerPixel);
offsetSize += ((int)crop.width*bytesPerPixel);
}
/*
// OPTION 2: Move cropped data pixel-by-pixel or byte-by-byte
for (int y = (int)crop.y; y < (int)(crop.y + crop.height); y++)
{
for (int x = (int)crop.x; x < (int)(crop.x + crop.width); x++)
{
//memcpy(croppedData + ((y - (int)crop.y)*(int)crop.width + (x - (int)crop.x))*bytesPerPixel, ((unsigned char *)image->data) + (y*image->width + x)*bytesPerPixel, bytesPerPixel);
for (int i = 0; i < bytesPerPixel; i++) croppedData[((y - (int)crop.y)*(int)crop.width + (x - (int)crop.x))*bytesPerPixel + i] = ((unsigned char *)image->data)[(y*image->width + x)*bytesPerPixel + i];
}
}
*/
RL_FREE(image->data);
image->data = croppedData;
image->width = (int)crop.width;
image->height = (int)crop.height;
}
}
// Convert image data to desired format
void ImageFormat(Image *image, int newFormat)
{
// Security check to avoid program crash
if ((image->data == NULL) || (image->width == 0) || (image->height == 0)) return;
if ((newFormat != 0) && (image->format != newFormat))
{
if ((image->format < PIXELFORMAT_COMPRESSED_DXT1_RGB) && (newFormat < PIXELFORMAT_COMPRESSED_DXT1_RGB))
{
Vector4 *pixels = LoadImageDataNormalized(*image); // Supports 8 to 32 bit per channel
RL_FREE(image->data); // WARNING! We loose mipmaps data --> Regenerated at the end...
image->data = NULL;
image->format = newFormat;
int k = 0;
switch (image->format)
{
case PIXELFORMAT_UNCOMPRESSED_GRAYSCALE:
{
image->data = (unsigned char *)RL_MALLOC(image->width*image->height*sizeof(unsigned char));
for (int i = 0; i < image->width*image->height; i++)
{
((unsigned char *)image->data)[i] = (unsigned char)((pixels[i].x*0.299f + pixels[i].y*0.587f + pixels[i].z*0.114f)*255.0f);
}
} break;
case PIXELFORMAT_UNCOMPRESSED_GRAY_ALPHA:
{
image->data = (unsigned char *)RL_MALLOC(image->width*image->height*2*sizeof(unsigned char));
for (int i = 0; i < image->width*image->height*2; i += 2, k++)
{
((unsigned char *)image->data)[i] = (unsigned char)((pixels[k].x*0.299f + (float)pixels[k].y*0.587f + (float)pixels[k].z*0.114f)*255.0f);
((unsigned char *)image->data)[i + 1] = (unsigned char)(pixels[k].w*255.0f);
}
} break;
case PIXELFORMAT_UNCOMPRESSED_R5G6B5:
{
image->data = (unsigned short *)RL_MALLOC(image->width*image->height*sizeof(unsigned short));
unsigned char r = 0;
unsigned char g = 0;
unsigned char b = 0;
for (int i = 0; i < image->width*image->height; i++)
{
r = (unsigned char)(round(pixels[i].x*31.0f));
g = (unsigned char)(round(pixels[i].y*63.0f));
b = (unsigned char)(round(pixels[i].z*31.0f));
((unsigned short *)image->data)[i] = (unsigned short)r << 11 | (unsigned short)g << 5 | (unsigned short)b;
}
} break;
case PIXELFORMAT_UNCOMPRESSED_R8G8B8:
{
image->data = (unsigned char *)RL_MALLOC(image->width*image->height*3*sizeof(unsigned char));
for (int i = 0, k = 0; i < image->width*image->height*3; i += 3, k++)
{
((unsigned char *)image->data)[i] = (unsigned char)(pixels[k].x*255.0f);
((unsigned char *)image->data)[i + 1] = (unsigned char)(pixels[k].y*255.0f);
((unsigned char *)image->data)[i + 2] = (unsigned char)(pixels[k].z*255.0f);
}
} break;
case PIXELFORMAT_UNCOMPRESSED_R5G5B5A1:
{
image->data = (unsigned short *)RL_MALLOC(image->width*image->height*sizeof(unsigned short));
unsigned char r = 0;
unsigned char g = 0;
unsigned char b = 0;
unsigned char a = 0;
for (int i = 0; i < image->width*image->height; i++)
{
r = (unsigned char)(round(pixels[i].x*31.0f));
g = (unsigned char)(round(pixels[i].y*31.0f));
b = (unsigned char)(round(pixels[i].z*31.0f));
a = (pixels[i].w > ((float)PIXELFORMAT_UNCOMPRESSED_R5G5B5A1_ALPHA_THRESHOLD/255.0f))? 1 : 0;
((unsigned short *)image->data)[i] = (unsigned short)r << 11 | (unsigned short)g << 6 | (unsigned short)b << 1 | (unsigned short)a;
}
} break;
case PIXELFORMAT_UNCOMPRESSED_R4G4B4A4:
{
image->data = (unsigned short *)RL_MALLOC(image->width*image->height*sizeof(unsigned short));
unsigned char r = 0;
unsigned char g = 0;
unsigned char b = 0;
unsigned char a = 0;
for (int i = 0; i < image->width*image->height; i++)
{
r = (unsigned char)(round(pixels[i].x*15.0f));
g = (unsigned char)(round(pixels[i].y*15.0f));
b = (unsigned char)(round(pixels[i].z*15.0f));
a = (unsigned char)(round(pixels[i].w*15.0f));
((unsigned short *)image->data)[i] = (unsigned short)r << 12 | (unsigned short)g << 8 | (unsigned short)b << 4 | (unsigned short)a;
}
} break;
case PIXELFORMAT_UNCOMPRESSED_R8G8B8A8:
{
image->data = (unsigned char *)RL_MALLOC(image->width*image->height*4*sizeof(unsigned char));
for (int i = 0, k = 0; i < image->width*image->height*4; i += 4, k++)
{
((unsigned char *)image->data)[i] = (unsigned char)(pixels[k].x*255.0f);
((unsigned char *)image->data)[i + 1] = (unsigned char)(pixels[k].y*255.0f);
((unsigned char *)image->data)[i + 2] = (unsigned char)(pixels[k].z*255.0f);
((unsigned char *)image->data)[i + 3] = (unsigned char)(pixels[k].w*255.0f);
}
} break;
case PIXELFORMAT_UNCOMPRESSED_R32:
{
// WARNING: Image is converted to GRAYSCALE eqeuivalent 32bit
image->data = (float *)RL_MALLOC(image->width*image->height*sizeof(float));
for (int i = 0; i < image->width*image->height; i++)
{
((float *)image->data)[i] = (float)(pixels[i].x*0.299f + pixels[i].y*0.587f + pixels[i].z*0.114f);
}
} break;
case PIXELFORMAT_UNCOMPRESSED_R32G32B32:
{
image->data = (float *)RL_MALLOC(image->width*image->height*3*sizeof(float));
for (int i = 0, k = 0; i < image->width*image->height*3; i += 3, k++)
{
((float *)image->data)[i] = pixels[k].x;
((float *)image->data)[i + 1] = pixels[k].y;
((float *)image->data)[i + 2] = pixels[k].z;
}
} break;
case PIXELFORMAT_UNCOMPRESSED_R32G32B32A32:
{
image->data = (float *)RL_MALLOC(image->width*image->height*4*sizeof(float));
for (int i = 0, k = 0; i < image->width*image->height*4; i += 4, k++)
{
((float *)image->data)[i] = pixels[k].x;
((float *)image->data)[i + 1] = pixels[k].y;
((float *)image->data)[i + 2] = pixels[k].z;
((float *)image->data)[i + 3] = pixels[k].w;
}
} break;
default: break;
}
RL_FREE(pixels);
pixels = NULL;
// In case original image had mipmaps, generate mipmaps for formated image
// NOTE: Original mipmaps are replaced by new ones, if custom mipmaps were used, they are lost
if (image->mipmaps > 1)
{
image->mipmaps = 1;
#if defined(SUPPORT_IMAGE_MANIPULATION)
if (image->data != NULL) ImageMipmaps(image);
#endif
}
}
else TRACELOG(LOG_WARNING, "IMAGE: Data format is compressed, can not be converted");
}
}
// Convert image to POT (power-of-two)
// NOTE: It could be useful on OpenGL ES 2.0 (RPI, HTML5)
void ImageToPOT(Image *image, Color fill)
{
// Security check to avoid program crash
if ((image->data == NULL) || (image->width == 0) || (image->height == 0)) return;
// Calculate next power-of-two values
// NOTE: Just add the required amount of pixels at the right and bottom sides of image...
int potWidth = (int)powf(2, ceilf(logf((float)image->width)/logf(2)));
int potHeight = (int)powf(2, ceilf(logf((float)image->height)/logf(2)));
// Check if POT texture generation is required (if texture is not already POT)
if ((potWidth != image->width) || (potHeight != image->height)) ImageResizeCanvas(image, potWidth, potHeight, 0, 0, fill);
}
#if defined(SUPPORT_IMAGE_MANIPULATION)
// Create an image from text (default font)
Image ImageText(const char *text, int fontSize, Color color)
{
Image imText = { 0 };
#if defined(SUPPORT_MODULE_RTEXT)
int defaultFontSize = 10; // Default Font chars height in pixel
if (fontSize < defaultFontSize) fontSize = defaultFontSize;
int spacing = fontSize/defaultFontSize;
imText = ImageTextEx(GetFontDefault(), text, (float)fontSize, (float)spacing, color); // WARNING: Module required: rtext
#else
imText = GenImageColor(200, 60, BLACK); // Generating placeholder black image rectangle
TRACELOG(LOG_WARNING, "IMAGE: ImageTextEx() requires module: rtext");
#endif
return imText;
}
// Create an image from text (custom sprite font)
Image ImageTextEx(Font font, const char *text, float fontSize, float spacing, Color tint)
{
Image imText = { 0 };
#if defined(SUPPORT_MODULE_RTEXT)
int size = (int)strlen(text); // Get size in bytes of text
int textOffsetX = 0; // Image drawing position X
int textOffsetY = 0; // Offset between lines (on line break '\n')
// NOTE: Text image is generated at font base size, later scaled to desired font size
Vector2 imSize = MeasureTextEx(font, text, (float)font.baseSize, spacing); // WARNING: Module required: rtext
// Create image to store text
imText = GenImageColor((int)imSize.x, (int)imSize.y, BLANK);
for (int i = 0; i < size; i++)
{
// Get next codepoint from byte string and glyph index in font
int codepointByteCount = 0;
int codepoint = GetCodepoint(&text[i], &codepointByteCount); // WARNING: Module required: rtext
int index = GetGlyphIndex(font, codepoint); // WARNING: Module required: rtext
// NOTE: Normally we exit the decoding sequence as soon as a bad byte is found (and return 0x3f)
// but we need to draw all of the bad bytes using the '?' symbol moving one byte
if (codepoint == 0x3f) codepointByteCount = 1;
if (codepoint == '\n')
{
// NOTE: Fixed line spacing of 1.5 line-height
// TODO: Support custom line spacing defined by user
textOffsetY += (font.baseSize + font.baseSize/2);
textOffsetX = 0;
}
else
{
if ((codepoint != ' ') && (codepoint != '\t'))
{
Rectangle rec = { (float)(textOffsetX + font.glyphs[index].offsetX), (float)(textOffsetY + font.glyphs[index].offsetY), (float)font.recs[index].width, (float)font.recs[index].height };
ImageDraw(&imText, font.glyphs[index].image, (Rectangle){ 0, 0, (float)font.glyphs[index].image.width, (float)font.glyphs[index].image.height }, rec, tint);
}
if (font.glyphs[index].advanceX == 0) textOffsetX += (int)(font.recs[index].width + spacing);
else textOffsetX += font.glyphs[index].advanceX + (int)spacing;
}
i += (codepointByteCount - 1); // Move text bytes counter to next codepoint
}
// Scale image depending on text size
if (fontSize > imSize.y)
{
float scaleFactor = fontSize/imSize.y;
TRACELOG(LOG_INFO, "IMAGE: Text scaled by factor: %f", scaleFactor);
// Using nearest-neighbor scaling algorithm for default font
// WARNING: Module required: rtext
if (font.texture.id == GetFontDefault().texture.id) ImageResizeNN(&imText, (int)(imSize.x*scaleFactor), (int)(imSize.y*scaleFactor));
else ImageResize(&imText, (int)(imSize.x*scaleFactor), (int)(imSize.y*scaleFactor));
}
#else
imText = GenImageColor(200, 60, BLACK); // Generating placeholder black image rectangle
TRACELOG(LOG_WARNING, "IMAGE: ImageTextEx() requires module: rtext");
#endif
return imText;
}
// Crop image depending on alpha value
// NOTE: Threshold is defined as a percentatge: 0.0f -> 1.0f
void ImageAlphaCrop(Image *image, float threshold)
{
// Security check to avoid program crash
if ((image->data == NULL) || (image->width == 0) || (image->height == 0)) return;
Rectangle crop = GetImageAlphaBorder(*image, threshold);
// Crop if rectangle is valid
if (((int)crop.width != 0) && ((int)crop.height != 0)) ImageCrop(image, crop);
}
// Clear alpha channel to desired color
// NOTE: Threshold defines the alpha limit, 0.0f to 1.0f
void ImageAlphaClear(Image *image, Color color, float threshold)
{
// Security check to avoid program crash
if ((image->data == NULL) || (image->width == 0) || (image->height == 0)) return;
if (image->mipmaps > 1) TRACELOG(LOG_WARNING, "Image manipulation only applied to base mipmap level");
if (image->format >= PIXELFORMAT_COMPRESSED_DXT1_RGB) TRACELOG(LOG_WARNING, "Image manipulation not supported for compressed formats");
else
{
switch (image->format)
{
case PIXELFORMAT_UNCOMPRESSED_GRAY_ALPHA:
{
unsigned char thresholdValue = (unsigned char)(threshold*255.0f);
for (int i = 1; i < image->width*image->height*2; i += 2)
{
if (((unsigned char *)image->data)[i] <= thresholdValue)
{
((unsigned char *)image->data)[i - 1] = color.r;
((unsigned char *)image->data)[i] = color.a;
}
}
} break;
case PIXELFORMAT_UNCOMPRESSED_R5G5B5A1:
{
unsigned char thresholdValue = ((threshold < 0.5f)? 0 : 1);
unsigned char r = (unsigned char)(round((float)color.r*31.0f));
unsigned char g = (unsigned char)(round((float)color.g*31.0f));
unsigned char b = (unsigned char)(round((float)color.b*31.0f));
unsigned char a = (color.a < 128)? 0 : 1;
for (int i = 0; i < image->width*image->height; i++)
{
if ((((unsigned short *)image->data)[i] & 0b0000000000000001) <= thresholdValue)
{
((unsigned short *)image->data)[i] = (unsigned short)r << 11 | (unsigned short)g << 6 | (unsigned short)b << 1 | (unsigned short)a;
}
}
} break;
case PIXELFORMAT_UNCOMPRESSED_R4G4B4A4:
{
unsigned char thresholdValue = (unsigned char)(threshold*15.0f);
unsigned char r = (unsigned char)(round((float)color.r*15.0f));
unsigned char g = (unsigned char)(round((float)color.g*15.0f));
unsigned char b = (unsigned char)(round((float)color.b*15.0f));
unsigned char a = (unsigned char)(round((float)color.a*15.0f));
for (int i = 0; i < image->width*image->height; i++)
{
if ((((unsigned short *)image->data)[i] & 0x000f) <= thresholdValue)
{
((unsigned short *)image->data)[i] = (unsigned short)r << 12 | (unsigned short)g << 8 | (unsigned short)b << 4 | (unsigned short)a;
}
}
} break;
case PIXELFORMAT_UNCOMPRESSED_R8G8B8A8:
{
unsigned char thresholdValue = (unsigned char)(threshold*255.0f);
for (int i = 3; i < image->width*image->height*4; i += 4)
{
if (((unsigned char *)image->data)[i] <= thresholdValue)
{
((unsigned char *)image->data)[i - 3] = color.r;
((unsigned char *)image->data)[i - 2] = color.g;
((unsigned char *)image->data)[i - 1] = color.b;
((unsigned char *)image->data)[i] = color.a;
}
}
} break;
case PIXELFORMAT_UNCOMPRESSED_R32G32B32A32:
{
for (int i = 3; i < image->width*image->height*4; i += 4)
{
if (((float *)image->data)[i] <= threshold)
{
((float *)image->data)[i - 3] = (float)color.r/255.0f;
((float *)image->data)[i - 2] = (float)color.g/255.0f;
((float *)image->data)[i - 1] = (float)color.b/255.0f;
((float *)image->data)[i] = (float)color.a/255.0f;
}
}
} break;
default: break;
}
}
}
// Apply alpha mask to image
// NOTE 1: Returned image is GRAY_ALPHA (16bit) or RGBA (32bit)
// NOTE 2: alphaMask should be same size as image
void ImageAlphaMask(Image *image, Image alphaMask)
{
if ((image->width != alphaMask.width) || (image->height != alphaMask.height))
{
TRACELOG(LOG_WARNING, "IMAGE: Alpha mask must be same size as image");
}
else if (image->format >= PIXELFORMAT_COMPRESSED_DXT1_RGB)
{
TRACELOG(LOG_WARNING, "IMAGE: Alpha mask can not be applied to compressed data formats");
}
else
{
// Force mask to be Grayscale
Image mask = ImageCopy(alphaMask);
if (mask.format != PIXELFORMAT_UNCOMPRESSED_GRAYSCALE) ImageFormat(&mask, PIXELFORMAT_UNCOMPRESSED_GRAYSCALE);
// In case image is only grayscale, we just add alpha channel
if (image->format == PIXELFORMAT_UNCOMPRESSED_GRAYSCALE)
{
unsigned char *data = (unsigned char *)RL_MALLOC(image->width*image->height*2);
// Apply alpha mask to alpha channel
for (int i = 0, k = 0; (i < mask.width*mask.height) || (i < image->width*image->height); i++, k += 2)
{
data[k] = ((unsigned char *)image->data)[i];
data[k + 1] = ((unsigned char *)mask.data)[i];
}
RL_FREE(image->data);
image->data = data;
image->format = PIXELFORMAT_UNCOMPRESSED_GRAY_ALPHA;
}
else
{
// Convert image to RGBA
if (image->format != PIXELFORMAT_UNCOMPRESSED_R8G8B8A8) ImageFormat(image, PIXELFORMAT_UNCOMPRESSED_R8G8B8A8);
// Apply alpha mask to alpha channel
for (int i = 0, k = 3; (i < mask.width*mask.height) || (i < image->width*image->height); i++, k += 4)
{
((unsigned char *)image->data)[k] = ((unsigned char *)mask.data)[i];
}
}
UnloadImage(mask);
}
}
// Premultiply alpha channel
void ImageAlphaPremultiply(Image *image)
{
// Security check to avoid program crash
if ((image->data == NULL) || (image->width == 0) || (image->height == 0)) return;
float alpha = 0.0f;
Color *pixels = LoadImageColors(*image);
for (int i = 0; i < image->width*image->height; i++)
{
if (pixels[i].a == 0)
{
pixels[i].r = 0;
pixels[i].g = 0;
pixels[i].b = 0;
}
else if (pixels[i].a < 255)
{
alpha = (float)pixels[i].a/255.0f;
pixels[i].r = (unsigned char)((float)pixels[i].r*alpha);
pixels[i].g = (unsigned char)((float)pixels[i].g*alpha);
pixels[i].b = (unsigned char)((float)pixels[i].b*alpha);
}
}
RL_FREE(image->data);
int format = image->format;
image->data = pixels;
image->format = PIXELFORMAT_UNCOMPRESSED_R8G8B8A8;
ImageFormat(image, format);
}
// Resize and image to new size
// NOTE: Uses stb default scaling filters (both bicubic):
// STBIR_DEFAULT_FILTER_UPSAMPLE STBIR_FILTER_CATMULLROM
// STBIR_DEFAULT_FILTER_DOWNSAMPLE STBIR_FILTER_MITCHELL (high-quality Catmull-Rom)
void ImageResize(Image *image, int newWidth, int newHeight)
{
// Security check to avoid program crash
if ((image->data == NULL) || (image->width == 0) || (image->height == 0)) return;
bool fastPath = true;
if ((image->format != PIXELFORMAT_UNCOMPRESSED_GRAYSCALE) && (image->format != PIXELFORMAT_UNCOMPRESSED_GRAY_ALPHA) && (image->format != PIXELFORMAT_UNCOMPRESSED_R8G8B8) && (image->format != PIXELFORMAT_UNCOMPRESSED_R8G8B8A8)) fastPath = true;
if (fastPath)
{
int bytesPerPixel = GetPixelDataSize(1, 1, image->format);
unsigned char *output = (unsigned char *)RL_MALLOC(newWidth*newHeight*bytesPerPixel);
switch (image->format)
{
case PIXELFORMAT_UNCOMPRESSED_GRAYSCALE: stbir_resize_uint8((unsigned char *)image->data, image->width, image->height, 0, output, newWidth, newHeight, 0, 1); break;
case PIXELFORMAT_UNCOMPRESSED_GRAY_ALPHA: stbir_resize_uint8((unsigned char *)image->data, image->width, image->height, 0, output, newWidth, newHeight, 0, 2); break;
case PIXELFORMAT_UNCOMPRESSED_R8G8B8: stbir_resize_uint8((unsigned char *)image->data, image->width, image->height, 0, output, newWidth, newHeight, 0, 3); break;
case PIXELFORMAT_UNCOMPRESSED_R8G8B8A8: stbir_resize_uint8((unsigned char *)image->data, image->width, image->height, 0, output, newWidth, newHeight, 0, 4); break;
default: break;
}
RL_FREE(image->data);
image->data = output;
image->width = newWidth;
image->height = newHeight;
}
else
{
// Get data as Color pixels array to work with it
Color *pixels = LoadImageColors(*image);
Color *output = (Color *)RL_MALLOC(newWidth*newHeight*sizeof(Color));
// NOTE: Color data is casted to (unsigned char *), there shouldn't been any problem...
stbir_resize_uint8((unsigned char *)pixels, image->width, image->height, 0, (unsigned char *)output, newWidth, newHeight, 0, 4);
int format = image->format;
UnloadImageColors(pixels);
RL_FREE(image->data);
image->data = output;
image->width = newWidth;
image->height = newHeight;
image->format = PIXELFORMAT_UNCOMPRESSED_R8G8B8A8;
ImageFormat(image, format); // Reformat 32bit RGBA image to original format
}
}
// Resize and image to new size using Nearest-Neighbor scaling algorithm
void ImageResizeNN(Image *image,int newWidth,int newHeight)
{
// Security check to avoid program crash
if ((image->data == NULL) || (image->width == 0) || (image->height == 0)) return;
Color *pixels = LoadImageColors(*image);
Color *output = (Color *)RL_MALLOC(newWidth*newHeight*sizeof(Color));
// EDIT: added +1 to account for an early rounding problem
int xRatio = (int)((image->width << 16)/newWidth) + 1;
int yRatio = (int)((image->height << 16)/newHeight) + 1;
int x2, y2;
for (int y = 0; y < newHeight; y++)
{
for (int x = 0; x < newWidth; x++)
{
x2 = ((x*xRatio) >> 16);
y2 = ((y*yRatio) >> 16);
output[(y*newWidth) + x] = pixels[(y2*image->width) + x2] ;
}
}
int format = image->format;
RL_FREE(image->data);
image->data = output;
image->width = newWidth;
image->height = newHeight;
image->format = PIXELFORMAT_UNCOMPRESSED_R8G8B8A8;
ImageFormat(image, format); // Reformat 32bit RGBA image to original format
UnloadImageColors(pixels);
}
// Resize canvas and fill with color
// NOTE: Resize offset is relative to the top-left corner of the original image
void ImageResizeCanvas(Image *image, int newWidth, int newHeight, int offsetX, int offsetY, Color fill)
{
// Security check to avoid program crash
if ((image->data == NULL) || (image->width == 0) || (image->height == 0)) return;
if (image->mipmaps > 1) TRACELOG(LOG_WARNING, "Image manipulation only applied to base mipmap level");
if (image->format >= PIXELFORMAT_COMPRESSED_DXT1_RGB) TRACELOG(LOG_WARNING, "Image manipulation not supported for compressed formats");
else if ((newWidth != image->width) || (newHeight != image->height))
{
Rectangle srcRec = { 0, 0, (float)image->width, (float)image->height };
Vector2 dstPos = { (float)offsetX, (float)offsetY };
if (offsetX < 0)
{
srcRec.x = (float)-offsetX;
srcRec.width += (float)offsetX;
dstPos.x = 0;
}
else if ((offsetX + image->width) > newWidth) srcRec.width = (float)(newWidth - offsetX);
if (offsetY < 0)
{
srcRec.y = (float)-offsetY;
srcRec.height += (float)offsetY;
dstPos.y = 0;
}
else if ((offsetY + image->height) > newHeight) srcRec.height = (float)(newHeight - offsetY);
if (newWidth < srcRec.width) srcRec.width = (float)newWidth;
if (newHeight < srcRec.height) srcRec.height = (float)newHeight;
int bytesPerPixel = GetPixelDataSize(1, 1, image->format);
unsigned char *resizedData = (unsigned char *)RL_CALLOC(newWidth*newHeight*bytesPerPixel, 1);
// TODO: Fill resized canvas with fill color (must be formatted to image->format)
int dstOffsetSize = ((int)dstPos.y*newWidth + (int)dstPos.x)*bytesPerPixel;
for (int y = 0; y < (int)srcRec.height; y++)
{
memcpy(resizedData + dstOffsetSize, ((unsigned char *)image->data) + ((y + (int)srcRec.y)*image->width + (int)srcRec.x)*bytesPerPixel, (int)srcRec.width*bytesPerPixel);
dstOffsetSize += (newWidth*bytesPerPixel);
}
RL_FREE(image->data);
image->data = resizedData;
image->width = newWidth;
image->height = newHeight;
}
}
// Generate all mipmap levels for a provided image
// NOTE 1: Supports POT and NPOT images
// NOTE 2: image.data is scaled to include mipmap levels
// NOTE 3: Mipmaps format is the same as base image
void ImageMipmaps(Image *image)
{
// Security check to avoid program crash
if ((image->data == NULL) || (image->width == 0) || (image->height == 0)) return;
int mipCount = 1; // Required mipmap levels count (including base level)
int mipWidth = image->width; // Base image width
int mipHeight = image->height; // Base image height
int mipSize = GetPixelDataSize(mipWidth, mipHeight, image->format); // Image data size (in bytes)
// Count mipmap levels required
while ((mipWidth != 1) || (mipHeight != 1))
{
if (mipWidth != 1) mipWidth /= 2;
if (mipHeight != 1) mipHeight /= 2;
// Security check for NPOT textures
if (mipWidth < 1) mipWidth = 1;
if (mipHeight < 1) mipHeight = 1;
TRACELOGD("IMAGE: Next mipmap level: %i x %i - current size %i", mipWidth, mipHeight, mipSize);
mipCount++;
mipSize += GetPixelDataSize(mipWidth, mipHeight, image->format); // Add mipmap size (in bytes)
}
if (image->mipmaps < mipCount)
{
void *temp = RL_REALLOC(image->data, mipSize);
if (temp != NULL) image->data = temp; // Assign new pointer (new size) to store mipmaps data
else TRACELOG(LOG_WARNING, "IMAGE: Mipmaps required memory could not be allocated");
// Pointer to allocated memory point where store next mipmap level data
unsigned char *nextmip = (unsigned char *)image->data + GetPixelDataSize(image->width, image->height, image->format);
mipWidth = image->width/2;
mipHeight = image->height/2;
mipSize = GetPixelDataSize(mipWidth, mipHeight, image->format);
Image imCopy = ImageCopy(*image);
for (int i = 1; i < mipCount; i++)
{
TRACELOGD("IMAGE: Generating mipmap level: %i (%i x %i) - size: %i - offset: 0x%x", i, mipWidth, mipHeight, mipSize, nextmip);
ImageResize(&imCopy, mipWidth, mipHeight); // Uses internally Mitchell cubic downscale filter
memcpy(nextmip, imCopy.data, mipSize);
nextmip += mipSize;
image->mipmaps++;
mipWidth /= 2;
mipHeight /= 2;
// Security check for NPOT textures
if (mipWidth < 1) mipWidth = 1;
if (mipHeight < 1) mipHeight = 1;
mipSize = GetPixelDataSize(mipWidth, mipHeight, image->format);
}
UnloadImage(imCopy);
}
else TRACELOG(LOG_WARNING, "IMAGE: Mipmaps already available");
}
// Dither image data to 16bpp or lower (Floyd-Steinberg dithering)
// NOTE: In case selected bpp do not represent an known 16bit format,
// dithered data is stored in the LSB part of the unsigned short
void ImageDither(Image *image, int rBpp, int gBpp, int bBpp, int aBpp)
{
// Security check to avoid program crash
if ((image->data == NULL) || (image->width == 0) || (image->height == 0)) return;
if (image->format >= PIXELFORMAT_COMPRESSED_DXT1_RGB)
{
TRACELOG(LOG_WARNING, "IMAGE: Compressed data formats can not be dithered");
return;
}
if ((rBpp + gBpp + bBpp + aBpp) > 16)
{
TRACELOG(LOG_WARNING, "IMAGE: Unsupported dithering bpps (%ibpp), only 16bpp or lower modes supported", (rBpp+gBpp+bBpp+aBpp));
}
else
{
Color *pixels = LoadImageColors(*image);
RL_FREE(image->data); // free old image data
if ((image->format != PIXELFORMAT_UNCOMPRESSED_R8G8B8) && (image->format != PIXELFORMAT_UNCOMPRESSED_R8G8B8A8))
{
TRACELOG(LOG_WARNING, "IMAGE: Format is already 16bpp or lower, dithering could have no effect");
}
// Define new image format, check if desired bpp match internal known format
if ((rBpp == 5) && (gBpp == 6) && (bBpp == 5) && (aBpp == 0)) image->format = PIXELFORMAT_UNCOMPRESSED_R5G6B5;
else if ((rBpp == 5) && (gBpp == 5) && (bBpp == 5) && (aBpp == 1)) image->format = PIXELFORMAT_UNCOMPRESSED_R5G5B5A1;
else if ((rBpp == 4) && (gBpp == 4) && (bBpp == 4) && (aBpp == 4)) image->format = PIXELFORMAT_UNCOMPRESSED_R4G4B4A4;
else
{
image->format = 0;
TRACELOG(LOG_WARNING, "IMAGE: Unsupported dithered OpenGL internal format: %ibpp (R%iG%iB%iA%i)", (rBpp+gBpp+bBpp+aBpp), rBpp, gBpp, bBpp, aBpp);
}
// NOTE: We will store the dithered data as unsigned short (16bpp)
image->data = (unsigned short *)RL_MALLOC(image->width*image->height*sizeof(unsigned short));
Color oldPixel = WHITE;
Color newPixel = WHITE;
int rError, gError, bError;
unsigned short rPixel, gPixel, bPixel, aPixel; // Used for 16bit pixel composition
#define MIN(a,b) (((a)<(b))?(a):(b))
for (int y = 0; y < image->height; y++)
{
for (int x = 0; x < image->width; x++)
{
oldPixel = pixels[y*image->width + x];
// NOTE: New pixel obtained by bits truncate, it would be better to round values (check ImageFormat())
newPixel.r = oldPixel.r >> (8 - rBpp); // R bits
newPixel.g = oldPixel.g >> (8 - gBpp); // G bits
newPixel.b = oldPixel.b >> (8 - bBpp); // B bits
newPixel.a = oldPixel.a >> (8 - aBpp); // A bits (not used on dithering)
// NOTE: Error must be computed between new and old pixel but using same number of bits!
// We want to know how much color precision we have lost...
rError = (int)oldPixel.r - (int)(newPixel.r << (8 - rBpp));
gError = (int)oldPixel.g - (int)(newPixel.g << (8 - gBpp));
bError = (int)oldPixel.b - (int)(newPixel.b << (8 - bBpp));
pixels[y*image->width + x] = newPixel;
// NOTE: Some cases are out of the array and should be ignored
if (x < (image->width - 1))
{
pixels[y*image->width + x+1].r = MIN((int)pixels[y*image->width + x+1].r + (int)((float)rError*7.0f/16), 0xff);
pixels[y*image->width + x+1].g = MIN((int)pixels[y*image->width + x+1].g + (int)((float)gError*7.0f/16), 0xff);
pixels[y*image->width + x+1].b = MIN((int)pixels[y*image->width + x+1].b + (int)((float)bError*7.0f/16), 0xff);
}
if ((x > 0) && (y < (image->height - 1)))
{
pixels[(y+1)*image->width + x-1].r = MIN((int)pixels[(y+1)*image->width + x-1].r + (int)((float)rError*3.0f/16), 0xff);
pixels[(y+1)*image->width + x-1].g = MIN((int)pixels[(y+1)*image->width + x-1].g + (int)((float)gError*3.0f/16), 0xff);
pixels[(y+1)*image->width + x-1].b = MIN((int)pixels[(y+1)*image->width + x-1].b + (int)((float)bError*3.0f/16), 0xff);
}
if (y < (image->height - 1))
{
pixels[(y+1)*image->width + x].r = MIN((int)pixels[(y+1)*image->width + x].r + (int)((float)rError*5.0f/16), 0xff);
pixels[(y+1)*image->width + x].g = MIN((int)pixels[(y+1)*image->width + x].g + (int)((float)gError*5.0f/16), 0xff);
pixels[(y+1)*image->width + x].b = MIN((int)pixels[(y+1)*image->width + x].b + (int)((float)bError*5.0f/16), 0xff);
}
if ((x < (image->width - 1)) && (y < (image->height - 1)))
{
pixels[(y+1)*image->width + x+1].r = MIN((int)pixels[(y+1)*image->width + x+1].r + (int)((float)rError*1.0f/16), 0xff);
pixels[(y+1)*image->width + x+1].g = MIN((int)pixels[(y+1)*image->width + x+1].g + (int)((float)gError*1.0f/16), 0xff);
pixels[(y+1)*image->width + x+1].b = MIN((int)pixels[(y+1)*image->width + x+1].b + (int)((float)bError*1.0f/16), 0xff);
}
rPixel = (unsigned short)newPixel.r;
gPixel = (unsigned short)newPixel.g;
bPixel = (unsigned short)newPixel.b;
aPixel = (unsigned short)newPixel.a;
((unsigned short *)image->data)[y*image->width + x] = (rPixel << (gBpp + bBpp + aBpp)) | (gPixel << (bBpp + aBpp)) | (bPixel << aBpp) | aPixel;
}
}
UnloadImageColors(pixels);
}
}
// Flip image vertically
void ImageFlipVertical(Image *image)
{
// Security check to avoid program crash
if ((image->data == NULL) || (image->width == 0) || (image->height == 0)) return;
if (image->mipmaps > 1) TRACELOG(LOG_WARNING, "Image manipulation only applied to base mipmap level");
if (image->format >= PIXELFORMAT_COMPRESSED_DXT1_RGB) TRACELOG(LOG_WARNING, "Image manipulation not supported for compressed formats");
else
{
int bytesPerPixel = GetPixelDataSize(1, 1, image->format);
unsigned char *flippedData = (unsigned char *)RL_MALLOC(image->width*image->height*bytesPerPixel);
for (int i = (image->height - 1), offsetSize = 0; i >= 0; i--)
{
memcpy(flippedData + offsetSize, ((unsigned char *)image->data) + i*image->width*bytesPerPixel, image->width*bytesPerPixel);
offsetSize += image->width*bytesPerPixel;
}
RL_FREE(image->data);
image->data = flippedData;
}
}
// Flip image horizontally
void ImageFlipHorizontal(Image *image)
{
// Security check to avoid program crash
if ((image->data == NULL) || (image->width == 0) || (image->height == 0)) return;
if (image->mipmaps > 1) TRACELOG(LOG_WARNING, "Image manipulation only applied to base mipmap level");
if (image->format >= PIXELFORMAT_COMPRESSED_DXT1_RGB) TRACELOG(LOG_WARNING, "Image manipulation not supported for compressed formats");
else
{
int bytesPerPixel = GetPixelDataSize(1, 1, image->format);
unsigned char *flippedData = (unsigned char *)RL_MALLOC(image->width*image->height*bytesPerPixel);
for (int y = 0; y < image->height; y++)
{
for (int x = 0; x < image->width; x++)
{
// OPTION 1: Move pixels with memcopy()
//memcpy(flippedData + (y*image->width + x)*bytesPerPixel, ((unsigned char *)image->data) + (y*image->width + (image->width - 1 - x))*bytesPerPixel, bytesPerPixel);
// OPTION 2: Just copy data pixel by pixel
for (int i = 0; i < bytesPerPixel; i++) flippedData[(y*image->width + x)*bytesPerPixel + i] = ((unsigned char *)image->data)[(y*image->width + (image->width - 1 - x))*bytesPerPixel + i];
}
}
RL_FREE(image->data);
image->data = flippedData;
/*
// OPTION 3: Faster implementation (specific for 32bit pixels)
// NOTE: It does not require additional allocations
uint32_t *ptr = (uint32_t *)image->data;
for (int y = 0; y < image->height; y++)
{
for (int x = 0; x < image->width/2; x++)
{
uint32_t backup = ptr[y*image->width + x];
ptr[y*image->width + x] = ptr[y*image->width + (image->width - 1 - x)];
ptr[y*image->width + (image->width - 1 - x)] = backup;
}
}
*/
}
}
// Rotate image clockwise 90deg
void ImageRotateCW(Image *image)
{
// Security check to avoid program crash
if ((image->data == NULL) || (image->width == 0) || (image->height == 0)) return;
if (image->mipmaps > 1) TRACELOG(LOG_WARNING, "Image manipulation only applied to base mipmap level");
if (image->format >= PIXELFORMAT_COMPRESSED_DXT1_RGB) TRACELOG(LOG_WARNING, "Image manipulation not supported for compressed formats");
else
{
int bytesPerPixel = GetPixelDataSize(1, 1, image->format);
unsigned char *rotatedData = (unsigned char *)RL_MALLOC(image->width*image->height*bytesPerPixel);
for (int y = 0; y < image->height; y++)
{
for (int x = 0; x < image->width; x++)
{
//memcpy(rotatedData + (x*image->height + (image->height - y - 1))*bytesPerPixel, ((unsigned char *)image->data) + (y*image->width + x)*bytesPerPixel, bytesPerPixel);
for (int i = 0; i < bytesPerPixel; i++) rotatedData[(x*image->height + (image->height - y - 1))*bytesPerPixel + i] = ((unsigned char *)image->data)[(y*image->width + x)*bytesPerPixel + i];
}
}
RL_FREE(image->data);
image->data = rotatedData;
int width = image->width;
int height = image-> height;
image->width = height;
image->height = width;
}
}
// Rotate image counter-clockwise 90deg
void ImageRotateCCW(Image *image)
{
// Security check to avoid program crash
if ((image->data == NULL) || (image->width == 0) || (image->height == 0)) return;
if (image->mipmaps > 1) TRACELOG(LOG_WARNING, "Image manipulation only applied to base mipmap level");
if (image->format >= PIXELFORMAT_COMPRESSED_DXT1_RGB) TRACELOG(LOG_WARNING, "Image manipulation not supported for compressed formats");
else
{
int bytesPerPixel = GetPixelDataSize(1, 1, image->format);
unsigned char *rotatedData = (unsigned char *)RL_MALLOC(image->width*image->height*bytesPerPixel);
for (int y = 0; y < image->height; y++)
{
for (int x = 0; x < image->width; x++)
{
//memcpy(rotatedData + (x*image->height + y))*bytesPerPixel, ((unsigned char *)image->data) + (y*image->width + (image->width - x - 1))*bytesPerPixel, bytesPerPixel);
for (int i = 0; i < bytesPerPixel; i++) rotatedData[(x*image->height + y)*bytesPerPixel + i] = ((unsigned char *)image->data)[(y*image->width + (image->width - x - 1))*bytesPerPixel + i];
}
}
RL_FREE(image->data);
image->data = rotatedData;
int width = image->width;
int height = image-> height;
image->width = height;
image->height = width;
}
}
// Modify image color: tint
void ImageColorTint(Image *image, Color color)
{
// Security check to avoid program crash
if ((image->data == NULL) || (image->width == 0) || (image->height == 0)) return;
Color *pixels = LoadImageColors(*image);
float cR = (float)color.r/255;
float cG = (float)color.g/255;
float cB = (float)color.b/255;
float cA = (float)color.a/255;
for (int y = 0; y < image->height; y++)
{
for (int x = 0; x < image->width; x++)
{
int index = y*image->width + x;
unsigned char r = (unsigned char)(((float)pixels[index].r/255*cR)*255.0f);
unsigned char g = (unsigned char)(((float)pixels[index].g/255*cG)*255.0f);
unsigned char b = (unsigned char)(((float)pixels[index].b/255*cB)*255.0f);
unsigned char a = (unsigned char)(((float)pixels[index].a/255*cA)*255.0f);
pixels[y*image->width + x].r = r;
pixels[y*image->width + x].g = g;
pixels[y*image->width + x].b = b;
pixels[y*image->width + x].a = a;
}
}
int format = image->format;
RL_FREE(image->data);
image->data = pixels;
image->format = PIXELFORMAT_UNCOMPRESSED_R8G8B8A8;
ImageFormat(image, format);
}
// Modify image color: invert
void ImageColorInvert(Image *image)
{
// Security check to avoid program crash
if ((image->data == NULL) || (image->width == 0) || (image->height == 0)) return;
Color *pixels = LoadImageColors(*image);
for (int y = 0; y < image->height; y++)
{
for (int x = 0; x < image->width; x++)
{
pixels[y*image->width + x].r = 255 - pixels[y*image->width + x].r;
pixels[y*image->width + x].g = 255 - pixels[y*image->width + x].g;
pixels[y*image->width + x].b = 255 - pixels[y*image->width + x].b;
}
}
int format = image->format;
RL_FREE(image->data);
image->data = pixels;
image->format = PIXELFORMAT_UNCOMPRESSED_R8G8B8A8;
ImageFormat(image, format);
}
// Modify image color: grayscale
void ImageColorGrayscale(Image *image)
{
ImageFormat(image, PIXELFORMAT_UNCOMPRESSED_GRAYSCALE);
}
// Modify image color: contrast
// NOTE: Contrast values between -100 and 100
void ImageColorContrast(Image *image, float contrast)
{
// Security check to avoid program crash
if ((image->data == NULL) || (image->width == 0) || (image->height == 0)) return;
if (contrast < -100) contrast = -100;
if (contrast > 100) contrast = 100;
contrast = (100.0f + contrast)/100.0f;
contrast *= contrast;
Color *pixels = LoadImageColors(*image);
for (int y = 0; y < image->height; y++)
{
for (int x = 0; x < image->width; x++)
{
float pR = (float)pixels[y*image->width + x].r/255.0f;
pR -= 0.5;
pR *= contrast;
pR += 0.5;
pR *= 255;
if (pR < 0) pR = 0;
if (pR > 255) pR = 255;
float pG = (float)pixels[y*image->width + x].g/255.0f;
pG -= 0.5;
pG *= contrast;
pG += 0.5;
pG *= 255;
if (pG < 0) pG = 0;
if (pG > 255) pG = 255;
float pB = (float)pixels[y*image->width + x].b/255.0f;
pB -= 0.5;
pB *= contrast;
pB += 0.5;
pB *= 255;
if (pB < 0) pB = 0;
if (pB > 255) pB = 255;
pixels[y*image->width + x].r = (unsigned char)pR;
pixels[y*image->width + x].g = (unsigned char)pG;
pixels[y*image->width + x].b = (unsigned char)pB;
}
}
int format = image->format;
RL_FREE(image->data);
image->data = pixels;
image->format = PIXELFORMAT_UNCOMPRESSED_R8G8B8A8;
ImageFormat(image, format);
}
// Modify image color: brightness
// NOTE: Brightness values between -255 and 255
void ImageColorBrightness(Image *image, int brightness)
{
// Security check to avoid program crash
if ((image->data == NULL) || (image->width == 0) || (image->height == 0)) return;
if (brightness < -255) brightness = -255;
if (brightness > 255) brightness = 255;
Color *pixels = LoadImageColors(*image);
for (int y = 0; y < image->height; y++)
{
for (int x = 0; x < image->width; x++)
{
int cR = pixels[y*image->width + x].r + brightness;
int cG = pixels[y*image->width + x].g + brightness;
int cB = pixels[y*image->width + x].b + brightness;
if (cR < 0) cR = 1;
if (cR > 255) cR = 255;
if (cG < 0) cG = 1;
if (cG > 255) cG = 255;
if (cB < 0) cB = 1;
if (cB > 255) cB = 255;
pixels[y*image->width + x].r = (unsigned char)cR;
pixels[y*image->width + x].g = (unsigned char)cG;
pixels[y*image->width + x].b = (unsigned char)cB;
}
}
int format = image->format;
RL_FREE(image->data);
image->data = pixels;
image->format = PIXELFORMAT_UNCOMPRESSED_R8G8B8A8;
ImageFormat(image, format);
}
// Modify image color: replace color
void ImageColorReplace(Image *image, Color color, Color replace)
{
// Security check to avoid program crash
if ((image->data == NULL) || (image->width == 0) || (image->height == 0)) return;
Color *pixels = LoadImageColors(*image);
for (int y = 0; y < image->height; y++)
{
for (int x = 0; x < image->width; x++)
{
if ((pixels[y*image->width + x].r == color.r) &&
(pixels[y*image->width + x].g == color.g) &&
(pixels[y*image->width + x].b == color.b) &&
(pixels[y*image->width + x].a == color.a))
{
pixels[y*image->width + x].r = replace.r;
pixels[y*image->width + x].g = replace.g;
pixels[y*image->width + x].b = replace.b;
pixels[y*image->width + x].a = replace.a;
}
}
}
int format = image->format;
RL_FREE(image->data);
image->data = pixels;
image->format = PIXELFORMAT_UNCOMPRESSED_R8G8B8A8;
ImageFormat(image, format);
}
#endif // SUPPORT_IMAGE_MANIPULATION
// Load color data from image as a Color array (RGBA - 32bit)
// NOTE: Memory allocated should be freed using UnloadImageColors();
Color *LoadImageColors(Image image)
{
if ((image.width == 0) || (image.height == 0)) return NULL;
Color *pixels = (Color *)RL_MALLOC(image.width*image.height*sizeof(Color));
if (image.format >= PIXELFORMAT_COMPRESSED_DXT1_RGB) TRACELOG(LOG_WARNING, "IMAGE: Pixel data retrieval not supported for compressed image formats");
else
{
if ((image.format == PIXELFORMAT_UNCOMPRESSED_R32) ||
(image.format == PIXELFORMAT_UNCOMPRESSED_R32G32B32) ||
(image.format == PIXELFORMAT_UNCOMPRESSED_R32G32B32A32)) TRACELOG(LOG_WARNING, "IMAGE: Pixel format converted from 32bit to 8bit per channel");
for (int i = 0, k = 0; i < image.width*image.height; i++)
{
switch (image.format)
{
case PIXELFORMAT_UNCOMPRESSED_GRAYSCALE:
{
pixels[i].r = ((unsigned char *)image.data)[i];
pixels[i].g = ((unsigned char *)image.data)[i];
pixels[i].b = ((unsigned char *)image.data)[i];
pixels[i].a = 255;
} break;
case PIXELFORMAT_UNCOMPRESSED_GRAY_ALPHA:
{
pixels[i].r = ((unsigned char *)image.data)[k];
pixels[i].g = ((unsigned char *)image.data)[k];
pixels[i].b = ((unsigned char *)image.data)[k];
pixels[i].a = ((unsigned char *)image.data)[k + 1];
k += 2;
} break;
case PIXELFORMAT_UNCOMPRESSED_R5G5B5A1:
{
unsigned short pixel = ((unsigned short *)image.data)[i];
pixels[i].r = (unsigned char)((float)((pixel & 0b1111100000000000) >> 11)*(255/31));
pixels[i].g = (unsigned char)((float)((pixel & 0b0000011111000000) >> 6)*(255/31));
pixels[i].b = (unsigned char)((float)((pixel & 0b0000000000111110) >> 1)*(255/31));
pixels[i].a = (unsigned char)((pixel & 0b0000000000000001)*255);
} break;
case PIXELFORMAT_UNCOMPRESSED_R5G6B5:
{
unsigned short pixel = ((unsigned short *)image.data)[i];
pixels[i].r = (unsigned char)((float)((pixel & 0b1111100000000000) >> 11)*(255/31));
pixels[i].g = (unsigned char)((float)((pixel & 0b0000011111100000) >> 5)*(255/63));
pixels[i].b = (unsigned char)((float)(pixel & 0b0000000000011111)*(255/31));
pixels[i].a = 255;
} break;
case PIXELFORMAT_UNCOMPRESSED_R4G4B4A4:
{
unsigned short pixel = ((unsigned short *)image.data)[i];
pixels[i].r = (unsigned char)((float)((pixel & 0b1111000000000000) >> 12)*(255/15));
pixels[i].g = (unsigned char)((float)((pixel & 0b0000111100000000) >> 8)*(255/15));
pixels[i].b = (unsigned char)((float)((pixel & 0b0000000011110000) >> 4)*(255/15));
pixels[i].a = (unsigned char)((float)(pixel & 0b0000000000001111)*(255/15));
} break;
case PIXELFORMAT_UNCOMPRESSED_R8G8B8A8:
{
pixels[i].r = ((unsigned char *)image.data)[k];
pixels[i].g = ((unsigned char *)image.data)[k + 1];
pixels[i].b = ((unsigned char *)image.data)[k + 2];
pixels[i].a = ((unsigned char *)image.data)[k + 3];
k += 4;
} break;
case PIXELFORMAT_UNCOMPRESSED_R8G8B8:
{
pixels[i].r = (unsigned char)((unsigned char *)image.data)[k];
pixels[i].g = (unsigned char)((unsigned char *)image.data)[k + 1];
pixels[i].b = (unsigned char)((unsigned char *)image.data)[k + 2];
pixels[i].a = 255;
k += 3;
} break;
case PIXELFORMAT_UNCOMPRESSED_R32:
{
pixels[i].r = (unsigned char)(((float *)image.data)[k]*255.0f);
pixels[i].g = 0;
pixels[i].b = 0;
pixels[i].a = 255;
} break;
case PIXELFORMAT_UNCOMPRESSED_R32G32B32:
{
pixels[i].r = (unsigned char)(((float *)image.data)[k]*255.0f);
pixels[i].g = (unsigned char)(((float *)image.data)[k + 1]*255.0f);
pixels[i].b = (unsigned char)(((float *)image.data)[k + 2]*255.0f);
pixels[i].a = 255;
k += 3;
} break;
case PIXELFORMAT_UNCOMPRESSED_R32G32B32A32:
{
pixels[i].r = (unsigned char)(((float *)image.data)[k]*255.0f);
pixels[i].g = (unsigned char)(((float *)image.data)[k]*255.0f);
pixels[i].b = (unsigned char)(((float *)image.data)[k]*255.0f);
pixels[i].a = (unsigned char)(((float *)image.data)[k]*255.0f);
k += 4;
} break;
default: break;
}
}
}
return pixels;
}
// Load colors palette from image as a Color array (RGBA - 32bit)
// NOTE: Memory allocated should be freed using UnloadImagePalette()
Color *LoadImagePalette(Image image, int maxPaletteSize, int *colorCount)
{
#define COLOR_EQUAL(col1, col2) ((col1.r == col2.r)&&(col1.g == col2.g)&&(col1.b == col2.b)&&(col1.a == col2.a))
int palCount = 0;
Color *palette = NULL;
Color *pixels = LoadImageColors(image);
if (pixels != NULL)
{
palette = (Color *)RL_MALLOC(maxPaletteSize*sizeof(Color));
for (int i = 0; i < maxPaletteSize; i++) palette[i] = BLANK; // Set all colors to BLANK
for (int i = 0; i < image.width*image.height; i++)
{
if (pixels[i].a > 0)
{
bool colorInPalette = false;
// Check if the color is already on palette
for (int j = 0; j < maxPaletteSize; j++)
{
if (COLOR_EQUAL(pixels[i], palette[j]))
{
colorInPalette = true;
break;
}
}
// Store color if not on the palette
if (!colorInPalette)
{
palette[palCount] = pixels[i]; // Add pixels[i] to palette
palCount++;
// We reached the limit of colors supported by palette
if (palCount >= maxPaletteSize)
{
i = image.width*image.height; // Finish palette get
TRACELOG(LOG_WARNING, "IMAGE: Palette is greater than %i colors", maxPaletteSize);
}
}
}
}
UnloadImageColors(pixels);
}
*colorCount = palCount;
return palette;
}
// Unload color data loaded with LoadImageColors()
void UnloadImageColors(Color *colors)
{
RL_FREE(colors);
}
// Unload colors palette loaded with LoadImagePalette()
void UnloadImagePalette(Color *colors)
{
RL_FREE(colors);
}
// Get image alpha border rectangle
// NOTE: Threshold is defined as a percentatge: 0.0f -> 1.0f
Rectangle GetImageAlphaBorder(Image image, float threshold)
{
Rectangle crop = { 0 };
Color *pixels = LoadImageColors(image);
if (pixels != NULL)
{
int xMin = 65536; // Define a big enough number
int xMax = 0;
int yMin = 65536;
int yMax = 0;
for (int y = 0; y < image.height; y++)
{
for (int x = 0; x < image.width; x++)
{
if (pixels[y*image.width + x].a > (unsigned char)(threshold*255.0f))
{
if (x < xMin) xMin = x;
if (x > xMax) xMax = x;
if (y < yMin) yMin = y;
if (y > yMax) yMax = y;
}
}
}
// Check for empty blank image
if ((xMin != 65536) && (xMax != 65536))
{
crop = (Rectangle){ (float)xMin, (float)yMin, (float)((xMax + 1) - xMin), (float)((yMax + 1) - yMin) };
}
UnloadImageColors(pixels);
}
return crop;
}
// Get image pixel color at (x, y) position
Color GetImageColor(Image image, int x, int y)
{
Color color = { 0 };
if ((x >=0) && (x < image.width) && (y >= 0) && (y < image.height))
{
switch (image.format)
{
case PIXELFORMAT_UNCOMPRESSED_GRAYSCALE:
{
color.r = ((unsigned char *)image.data)[y*image.width + x];
color.g = ((unsigned char *)image.data)[y*image.width + x];
color.b = ((unsigned char *)image.data)[y*image.width + x];
color.a = 255;
} break;
case PIXELFORMAT_UNCOMPRESSED_GRAY_ALPHA:
{
color.r = ((unsigned char *)image.data)[(y*image.width + x)*2];
color.g = ((unsigned char *)image.data)[(y*image.width + x)*2];
color.b = ((unsigned char *)image.data)[(y*image.width + x)*2];
color.a = ((unsigned char *)image.data)[(y*image.width + x)*2 + 1];
} break;
case PIXELFORMAT_UNCOMPRESSED_R5G5B5A1:
{
unsigned short pixel = ((unsigned short *)image.data)[y*image.width + x];
color.r = (unsigned char)((float)((pixel & 0b1111100000000000) >> 11)*(255/31));
color.g = (unsigned char)((float)((pixel & 0b0000011111000000) >> 6)*(255/31));
color.b = (unsigned char)((float)((pixel & 0b0000000000111110) >> 1)*(255/31));
color.a = (unsigned char)((pixel & 0b0000000000000001)*255);
} break;
case PIXELFORMAT_UNCOMPRESSED_R5G6B5:
{
unsigned short pixel = ((unsigned short *)image.data)[y*image.width + x];
color.r = (unsigned char)((float)((pixel & 0b1111100000000000) >> 11)*(255/31));
color.g = (unsigned char)((float)((pixel & 0b0000011111100000) >> 5)*(255/63));
color.b = (unsigned char)((float)(pixel & 0b0000000000011111)*(255/31));
color.a = 255;
} break;
case PIXELFORMAT_UNCOMPRESSED_R4G4B4A4:
{
unsigned short pixel = ((unsigned short *)image.data)[y*image.width + x];
color.r = (unsigned char)((float)((pixel & 0b1111000000000000) >> 12)*(255/15));
color.g = (unsigned char)((float)((pixel & 0b0000111100000000) >> 8)*(255/15));
color.b = (unsigned char)((float)((pixel & 0b0000000011110000) >> 4)*(255/15));
color.a = (unsigned char)((float)(pixel & 0b0000000000001111)*(255/15));
} break;
case PIXELFORMAT_UNCOMPRESSED_R8G8B8A8:
{
color.r = ((unsigned char *)image.data)[(y*image.width + x)*4];
color.g = ((unsigned char *)image.data)[(y*image.width + x)*4 + 1];
color.b = ((unsigned char *)image.data)[(y*image.width + x)*4 + 2];
color.a = ((unsigned char *)image.data)[(y*image.width + x)*4 + 3];
} break;
case PIXELFORMAT_UNCOMPRESSED_R8G8B8:
{
color.r = (unsigned char)((unsigned char *)image.data)[(y*image.width + x)*3];
color.g = (unsigned char)((unsigned char *)image.data)[(y*image.width + x)*3 + 1];
color.b = (unsigned char)((unsigned char *)image.data)[(y*image.width + x)*3 + 2];
color.a = 255;
} break;
case PIXELFORMAT_UNCOMPRESSED_R32:
{
color.r = (unsigned char)(((float *)image.data)[y*image.width + x]*255.0f);
color.g = 0;
color.b = 0;
color.a = 255;
} break;
case PIXELFORMAT_UNCOMPRESSED_R32G32B32:
{
color.r = (unsigned char)(((float *)image.data)[(y*image.width + x)*3]*255.0f);
color.g = (unsigned char)(((float *)image.data)[(y*image.width + x)*3 + 1]*255.0f);
color.b = (unsigned char)(((float *)image.data)[(y*image.width + x)*3 + 2]*255.0f);
color.a = 255;
} break;
case PIXELFORMAT_UNCOMPRESSED_R32G32B32A32:
{
color.r = (unsigned char)(((float *)image.data)[(y*image.width + x)*4]*255.0f);
color.g = (unsigned char)(((float *)image.data)[(y*image.width + x)*4]*255.0f);
color.b = (unsigned char)(((float *)image.data)[(y*image.width + x)*4]*255.0f);
color.a = (unsigned char)(((float *)image.data)[(y*image.width + x)*4]*255.0f);
} break;
default: TRACELOG(LOG_WARNING, "Compressed image format does not support color reading"); break;
}
}
else TRACELOG(LOG_WARNING, "Requested image pixel (%i, %i) out of bounds", x, y);
return color;
}
//------------------------------------------------------------------------------------
// Image drawing functions
//------------------------------------------------------------------------------------
// Clear image background with given color
void ImageClearBackground(Image *dst, Color color)
{
for (int i = 0; i < dst->width*dst->height; ++i) ImageDrawPixel(dst, i%dst->width, i/dst->width, color);
}
// Draw pixel within an image
// NOTE: Compressed image formats not supported
void ImageDrawPixel(Image *dst, int x, int y, Color color)
{
// Security check to avoid program crash
if ((dst->data == NULL) || (x < 0) || (x >= dst->width) || (y < 0) || (y >= dst->height)) return;
switch (dst->format)
{
case PIXELFORMAT_UNCOMPRESSED_GRAYSCALE:
{
// NOTE: Calculate grayscale equivalent color
Vector3 coln = { (float)color.r/255.0f, (float)color.g/255.0f, (float)color.b/255.0f };
unsigned char gray = (unsigned char)((coln.x*0.299f + coln.y*0.587f + coln.z*0.114f)*255.0f);
((unsigned char *)dst->data)[y*dst->width + x] = gray;
} break;
case PIXELFORMAT_UNCOMPRESSED_GRAY_ALPHA:
{
// NOTE: Calculate grayscale equivalent color
Vector3 coln = { (float)color.r/255.0f, (float)color.g/255.0f, (float)color.b/255.0f };
unsigned char gray = (unsigned char)((coln.x*0.299f + coln.y*0.587f + coln.z*0.114f)*255.0f);
((unsigned char *)dst->data)[(y*dst->width + x)*2] = gray;
((unsigned char *)dst->data)[(y*dst->width + x)*2 + 1] = color.a;
} break;
case PIXELFORMAT_UNCOMPRESSED_R5G6B5:
{
// NOTE: Calculate R5G6B5 equivalent color
Vector3 coln = { (float)color.r/255.0f, (float)color.g/255.0f, (float)color.b/255.0f };
unsigned char r = (unsigned char)(round(coln.x*31.0f));
unsigned char g = (unsigned char)(round(coln.y*63.0f));
unsigned char b = (unsigned char)(round(coln.z*31.0f));
((unsigned short *)dst->data)[y*dst->width + x] = (unsigned short)r << 11 | (unsigned short)g << 5 | (unsigned short)b;
} break;
case PIXELFORMAT_UNCOMPRESSED_R5G5B5A1:
{
// NOTE: Calculate R5G5B5A1 equivalent color
Vector4 coln = { (float)color.r/255.0f, (float)color.g/255.0f, (float)color.b/255.0f, (float)color.a/255.0f };
unsigned char r = (unsigned char)(round(coln.x*31.0f));
unsigned char g = (unsigned char)(round(coln.y*31.0f));
unsigned char b = (unsigned char)(round(coln.z*31.0f));
unsigned char a = (coln.w > ((float)PIXELFORMAT_UNCOMPRESSED_R5G5B5A1_ALPHA_THRESHOLD/255.0f))? 1 : 0;
((unsigned short *)dst->data)[y*dst->width + x] = (unsigned short)r << 11 | (unsigned short)g << 6 | (unsigned short)b << 1 | (unsigned short)a;
} break;
case PIXELFORMAT_UNCOMPRESSED_R4G4B4A4:
{
// NOTE: Calculate R5G5B5A1 equivalent color
Vector4 coln = { (float)color.r/255.0f, (float)color.g/255.0f, (float)color.b/255.0f, (float)color.a/255.0f };
unsigned char r = (unsigned char)(round(coln.x*15.0f));
unsigned char g = (unsigned char)(round(coln.y*15.0f));
unsigned char b = (unsigned char)(round(coln.z*15.0f));
unsigned char a = (unsigned char)(round(coln.w*15.0f));
((unsigned short *)dst->data)[y*dst->width + x] = (unsigned short)r << 12 | (unsigned short)g << 8 | (unsigned short)b << 4 | (unsigned short)a;
} break;
case PIXELFORMAT_UNCOMPRESSED_R8G8B8:
{
((unsigned char *)dst->data)[(y*dst->width + x)*3] = color.r;
((unsigned char *)dst->data)[(y*dst->width + x)*3 + 1] = color.g;
((unsigned char *)dst->data)[(y*dst->width + x)*3 + 2] = color.b;
} break;
case PIXELFORMAT_UNCOMPRESSED_R8G8B8A8:
{
((unsigned char *)dst->data)[(y*dst->width + x)*4] = color.r;
((unsigned char *)dst->data)[(y*dst->width + x)*4 + 1] = color.g;
((unsigned char *)dst->data)[(y*dst->width + x)*4 + 2] = color.b;
((unsigned char *)dst->data)[(y*dst->width + x)*4 + 3] = color.a;
} break;
case PIXELFORMAT_UNCOMPRESSED_R32:
{
// NOTE: Calculate grayscale equivalent color (normalized to 32bit)
Vector3 coln = { (float)color.r/255.0f, (float)color.g/255.0f, (float)color.b/255.0f };
((float *)dst->data)[y*dst->width + x] = coln.x*0.299f + coln.y*0.587f + coln.z*0.114f;
} break;
case PIXELFORMAT_UNCOMPRESSED_R32G32B32:
{
// NOTE: Calculate R32G32B32 equivalent color (normalized to 32bit)
Vector3 coln = { (float)color.r/255.0f, (float)color.g/255.0f, (float)color.b/255.0f };
((float *)dst->data)[(y*dst->width + x)*3] = coln.x;
((float *)dst->data)[(y*dst->width + x)*3 + 1] = coln.y;
((float *)dst->data)[(y*dst->width + x)*3 + 2] = coln.z;
} break;
case PIXELFORMAT_UNCOMPRESSED_R32G32B32A32:
{
// NOTE: Calculate R32G32B32A32 equivalent color (normalized to 32bit)
Vector4 coln = { (float)color.r/255.0f, (float)color.g/255.0f, (float)color.b/255.0f, (float)color.a/255.0f };
((float *)dst->data)[(y*dst->width + x)*4] = coln.x;
((float *)dst->data)[(y*dst->width + x)*4 + 1] = coln.y;
((float *)dst->data)[(y*dst->width + x)*4 + 2] = coln.z;
((float *)dst->data)[(y*dst->width + x)*4 + 3] = coln.w;
} break;
default: break;
}
}
// Draw pixel within an image (Vector version)
void ImageDrawPixelV(Image *dst, Vector2 position, Color color)
{
ImageDrawPixel(dst, (int)position.x, (int)position.y, color);
}
// Draw line within an image
void ImageDrawLine(Image *dst, int startPosX, int startPosY, int endPosX, int endPosY, Color color)
{
// Using Bresenham's algorithm as described in
// Drawing Lines with Pixels - Joshua Scott - March 2012
// https://classic.csunplugged.org/wp-content/uploads/2014/12/Lines.pdf
int changeInX = (endPosX - startPosX);
int absChangeInX = (changeInX < 0)? -changeInX : changeInX;
int changeInY = (endPosY - startPosY);
int absChangeInY = (changeInY < 0)? -changeInY : changeInY;
int startU, startV, endU, stepV; // Substitutions, either U = X, V = Y or vice versa. See loop at end of function
//int endV; // Not needed but left for better understanding, check code below
int A, B, P; // See linked paper above, explained down in the main loop
int reversedXY = (absChangeInY < absChangeInX);
if (reversedXY)
{
A = 2*absChangeInY;
B = A - 2*absChangeInX;
P = A - absChangeInX;
if (changeInX > 0)
{
startU = startPosX;
startV = startPosY;
endU = endPosX;
//endV = endPosY;
}
else
{
startU = endPosX;
startV = endPosY;
endU = startPosX;
//endV = startPosY;
// Since start and end are reversed
changeInX = -changeInX;
changeInY = -changeInY;
}
stepV = (changeInY < 0)? -1 : 1;
ImageDrawPixel(dst, startU, startV, color); // At this point they are correctly ordered...
}
else
{
A = 2*absChangeInX;
B = A - 2*absChangeInY;
P = A - absChangeInY;
if (changeInY > 0)
{
startU = startPosY;
startV = startPosX;
endU = endPosY;
//endV = endPosX;
}
else
{
startU = endPosY;
startV = endPosX;
endU = startPosY;
//endV = startPosX;
// Since start and end are reversed
changeInX = -changeInX;
changeInY = -changeInY;
}
stepV = (changeInX < 0)? -1 : 1;
ImageDrawPixel(dst, startV, startU, color); // ... but need to be reversed here. Repeated in the main loop below
}
// We already drew the start point. If we started at startU + 0, the line would be crooked and too short
for (int u = startU + 1, v = startV; u <= endU; u++)
{
if (P >= 0)
{
v += stepV; // Adjusts whenever we stray too far from the direct line. Details in the linked paper above
P += B; // Remembers that we corrected our path
}
else P += A; // Remembers how far we are from the direct line
if (reversedXY) ImageDrawPixel(dst, u, v, color);
else ImageDrawPixel(dst, v, u, color);
}
}
// Draw line within an image (Vector version)
void ImageDrawLineV(Image *dst, Vector2 start, Vector2 end, Color color)
{
ImageDrawLine(dst, (int)start.x, (int)start.y, (int)end.x, (int)end.y, color);
}
// Draw circle within an image
void ImageDrawCircle(Image *dst, int centerX, int centerY, int radius, Color color)
{
int x = 0, y = radius;
int decesionParameter = 3 - 2*radius;
while (y >= x)
{
ImageDrawPixel(dst, centerX + x, centerY + y, color);
ImageDrawPixel(dst, centerX - x, centerY + y, color);
ImageDrawPixel(dst, centerX + x, centerY - y, color);
ImageDrawPixel(dst, centerX - x, centerY - y, color);
ImageDrawPixel(dst, centerX + y, centerY + x, color);
ImageDrawPixel(dst, centerX - y, centerY + x, color);
ImageDrawPixel(dst, centerX + y, centerY - x, color);
ImageDrawPixel(dst, centerX - y, centerY - x, color);
x++;
if (decesionParameter > 0)
{
y--;
decesionParameter = decesionParameter + 4*(x - y) + 10;
}
else decesionParameter = decesionParameter + 4*x + 6;
}
}
// Draw circle within an image (Vector version)
void ImageDrawCircleV(Image *dst, Vector2 center, int radius, Color color)
{
ImageDrawCircle(dst, (int)center.x, (int)center.y, radius, color);
}
// Draw rectangle within an image
void ImageDrawRectangle(Image *dst, int posX, int posY, int width, int height, Color color)
{
ImageDrawRectangleRec(dst, (Rectangle){ (float)posX, (float)posY, (float)width, (float)height }, color);
}
// Draw rectangle within an image (Vector version)
void ImageDrawRectangleV(Image *dst, Vector2 position, Vector2 size, Color color)
{
ImageDrawRectangle(dst, (int)position.x, (int)position.y, (int)size.x, (int)size.y, color);
}
// Draw rectangle within an image
void ImageDrawRectangleRec(Image *dst, Rectangle rec, Color color)
{
// Security check to avoid program crash
if ((dst->data == NULL) || (dst->width == 0) || (dst->height == 0)) return;
int sy = (int)rec.y;
int ey = sy + (int)rec.height;
int sx = (int)rec.x;
int ex = sx + (int)rec.width;
for (int y = sy; y < ey; y++)
{
for (int x = sx; x < ex; x++)
{
ImageDrawPixel(dst, x, y, color);
}
}
}
// Draw rectangle lines within an image
void ImageDrawRectangleLines(Image *dst, Rectangle rec, int thick, Color color)
{
ImageDrawRectangle(dst, (int)rec.x, (int)rec.y, (int)rec.width, thick, color);
ImageDrawRectangle(dst, (int)rec.x, (int)(rec.y + thick), thick, (int)(rec.height - thick*2), color);
ImageDrawRectangle(dst, (int)(rec.x + rec.width - thick), (int)(rec.y + thick), thick, (int)(rec.height - thick*2), color);
ImageDrawRectangle(dst, (int)rec.x, (int)(rec.y + rec.height - thick), (int)rec.width, thick, color);
}
// Draw an image (source) within an image (destination)
// NOTE: Color tint is applied to source image
void ImageDraw(Image *dst, Image src, Rectangle srcRec, Rectangle dstRec, Color tint)
{
// Security check to avoid program crash
if ((dst->data == NULL) || (dst->width == 0) || (dst->height == 0) ||
(src.data == NULL) || (src.width == 0) || (src.height == 0)) return;
if (dst->mipmaps > 1) TRACELOG(LOG_WARNING, "Image drawing only applied to base mipmap level");
if (dst->format >= PIXELFORMAT_COMPRESSED_DXT1_RGB) TRACELOG(LOG_WARNING, "Image drawing not supported for compressed formats");
else
{
Image srcMod = { 0 }; // Source copy (in case it was required)
Image *srcPtr = &src; // Pointer to source image
bool useSrcMod = false; // Track source copy required
// Source rectangle out-of-bounds security checks
if (srcRec.x < 0) { srcRec.width += srcRec.x; srcRec.x = 0; }
if (srcRec.y < 0) { srcRec.height += srcRec.y; srcRec.y = 0; }
if ((srcRec.x + srcRec.width) > src.width) srcRec.width = src.width - srcRec.x;
if ((srcRec.y + srcRec.height) > src.height) srcRec.height = src.height - srcRec.y;
// Check if source rectangle needs to be resized to destination rectangle
// In that case, we make a copy of source and we apply all required transform
if (((int)srcRec.width != (int)dstRec.width) || ((int)srcRec.height != (int)dstRec.height))
{
srcMod = ImageFromImage(src, srcRec); // Create image from another image
ImageResize(&srcMod, (int)dstRec.width, (int)dstRec.height); // Resize to destination rectangle
srcRec = (Rectangle){ 0, 0, (float)srcMod.width, (float)srcMod.height };
srcPtr = &srcMod;
useSrcMod = true;
}
// Destination rectangle out-of-bounds security checks
if (dstRec.x < 0)
{
srcRec.x = -dstRec.x;
srcRec.width += dstRec.x;
dstRec.x = 0;
}
else if ((dstRec.x + srcRec.width) > dst->width) srcRec.width = dst->width - dstRec.x;
if (dstRec.y < 0)
{
srcRec.y = -dstRec.y;
srcRec.height += dstRec.y;
dstRec.y = 0;
}
else if ((dstRec.y + srcRec.height) > dst->height) srcRec.height = dst->height - dstRec.y;
if (dst->width < srcRec.width) srcRec.width = (float)dst->width;
if (dst->height < srcRec.height) srcRec.height = (float)dst->height;
// This blitting method is quite fast! The process followed is:
// for every pixel -> [get_src_format/get_dst_format -> blend -> format_to_dst]
// Some optimization ideas:
// [x] Avoid creating source copy if not required (no resize required)
// [x] Optimize ImageResize() for pixel format (alternative: ImageResizeNN())
// [x] Optimize ColorAlphaBlend() to avoid processing (alpha = 0) and (alpha = 1)
// [x] Optimize ColorAlphaBlend() for faster operations (maybe avoiding divs?)
// [x] Consider fast path: no alpha blending required cases (src has no alpha)
// [x] Consider fast path: same src/dst format with no alpha -> direct line copy
// [-] GetPixelColor(): Get Vector4 instead of Color, easier for ColorAlphaBlend()
// [ ] Support f32bit channels drawing
// TODO: Support PIXELFORMAT_UNCOMPRESSED_R32, PIXELFORMAT_UNCOMPRESSED_R32G32B32, PIXELFORMAT_UNCOMPRESSED_R32G32B32A32
Color colSrc, colDst, blend;
bool blendRequired = true;
// Fast path: Avoid blend if source has no alpha to blend
if ((tint.a == 255) && ((srcPtr->format == PIXELFORMAT_UNCOMPRESSED_GRAYSCALE) || (srcPtr->format == PIXELFORMAT_UNCOMPRESSED_R8G8B8) || (srcPtr->format == PIXELFORMAT_UNCOMPRESSED_R5G6B5))) blendRequired = false;
int strideDst = GetPixelDataSize(dst->width, 1, dst->format);
int bytesPerPixelDst = strideDst/(dst->width);
int strideSrc = GetPixelDataSize(srcPtr->width, 1, srcPtr->format);
int bytesPerPixelSrc = strideSrc/(srcPtr->width);
unsigned char *pSrcBase = (unsigned char *)srcPtr->data + ((int)srcRec.y*srcPtr->width + (int)srcRec.x)*bytesPerPixelSrc;
unsigned char *pDstBase = (unsigned char *)dst->data + ((int)dstRec.y*dst->width + (int)dstRec.x)*bytesPerPixelDst;
for (int y = 0; y < (int)srcRec.height; y++)
{
unsigned char *pSrc = pSrcBase;
unsigned char *pDst = pDstBase;
// Fast path: Avoid moving pixel by pixel if no blend required and same format
if (!blendRequired && (srcPtr->format == dst->format)) memcpy(pDst, pSrc, (int)(srcRec.width)*bytesPerPixelSrc);
else
{
for (int x = 0; x < (int)srcRec.width; x++)
{
colSrc = GetPixelColor(pSrc, srcPtr->format);
colDst = GetPixelColor(pDst, dst->format);
// Fast path: Avoid blend if source has no alpha to blend
if (blendRequired) blend = ColorAlphaBlend(colDst, colSrc, tint);
else blend = colSrc;
SetPixelColor(pDst, blend, dst->format);
pDst += bytesPerPixelDst;
pSrc += bytesPerPixelSrc;
}
}
pSrcBase += strideSrc;
pDstBase += strideDst;
}
if (useSrcMod) UnloadImage(srcMod); // Unload source modified image
}
}
// Draw text (default font) within an image (destination)
void ImageDrawText(Image *dst, const char *text, int posX, int posY, int fontSize, Color color)
{
#if defined(SUPPORT_MODULE_RTEXT)
Vector2 position = { (float)posX, (float)posY };
// NOTE: For default font, spacing is set to desired font size / default font size (10)
ImageDrawTextEx(dst, GetFontDefault(), text, position, (float)fontSize, (float)fontSize/10, color); // WARNING: Module required: rtext
#else
TRACELOG(LOG_WARNING, "IMAGE: ImageDrawText() requires module: rtext");
#endif
}
// Draw text (custom sprite font) within an image (destination)
void ImageDrawTextEx(Image *dst, Font font, const char *text, Vector2 position, float fontSize, float spacing, Color tint)
{
Image imText = ImageTextEx(font, text, fontSize, spacing, tint);
Rectangle srcRec = { 0.0f, 0.0f, (float)imText.width, (float)imText.height };
Rectangle dstRec = { position.x, position.y, (float)imText.width, (float)imText.height };
ImageDraw(dst, imText, srcRec, dstRec, WHITE);
UnloadImage(imText);
}
//------------------------------------------------------------------------------------
// Texture loading functions
//------------------------------------------------------------------------------------
// Load texture from file into GPU memory (VRAM)
Texture2D LoadTexture(const char *fileName)
{
Texture2D texture = { 0 };
Image image = LoadImage(fileName);
if (image.data != NULL)
{
texture = LoadTextureFromImage(image);
UnloadImage(image);
}
return texture;
}
// Load a texture from image data
// NOTE: image is not unloaded, it must be done manually
Texture2D LoadTextureFromImage(Image image)
{
Texture2D texture = { 0 };
if ((image.width != 0) && (image.height != 0))
{
texture.id = rlLoadTexture(image.data, image.width, image.height, image.format, image.mipmaps);
}
else TRACELOG(LOG_WARNING, "IMAGE: Data is not valid to load texture");
texture.width = image.width;
texture.height = image.height;
texture.mipmaps = image.mipmaps;
texture.format = image.format;
return texture;
}
// Load cubemap from image, multiple image cubemap layouts supported
TextureCubemap LoadTextureCubemap(Image image, int layout)
{
TextureCubemap cubemap = { 0 };
if (layout == CUBEMAP_LAYOUT_AUTO_DETECT) // Try to automatically guess layout type
{
// Check image width/height to determine the type of cubemap provided
if (image.width > image.height)
{
if ((image.width/6) == image.height) { layout = CUBEMAP_LAYOUT_LINE_HORIZONTAL; cubemap.width = image.width/6; }
else if ((image.width/4) == (image.height/3)) { layout = CUBEMAP_LAYOUT_CROSS_FOUR_BY_THREE; cubemap.width = image.width/4; }
else if (image.width >= (int)((float)image.height*1.85f)) { layout = CUBEMAP_LAYOUT_PANORAMA; cubemap.width = image.width/4; }
}
else if (image.height > image.width)
{
if ((image.height/6) == image.width) { layout = CUBEMAP_LAYOUT_LINE_VERTICAL; cubemap.width = image.height/6; }
else if ((image.width/3) == (image.height/4)) { layout = CUBEMAP_LAYOUT_CROSS_THREE_BY_FOUR; cubemap.width = image.width/3; }
}
cubemap.height = cubemap.width;
}
// Layout provided or already auto-detected
if (layout != CUBEMAP_LAYOUT_AUTO_DETECT)
{
int size = cubemap.width;
Image faces = { 0 }; // Vertical column image
Rectangle faceRecs[6] = { 0 }; // Face source rectangles
for (int i = 0; i < 6; i++) faceRecs[i] = (Rectangle){ 0, 0, (float)size, (float)size };
if (layout == CUBEMAP_LAYOUT_LINE_VERTICAL)
{
faces = ImageCopy(image); // Image data already follows expected convention
}
else if (layout == CUBEMAP_LAYOUT_PANORAMA)
{
// TODO: Convert panorama image to square faces...
// Ref: https://github.com/denivip/panorama/blob/master/panorama.cpp
}
else
{
if (layout == CUBEMAP_LAYOUT_LINE_HORIZONTAL) for (int i = 0; i < 6; i++) faceRecs[i].x = (float)size*i;
else if (layout == CUBEMAP_LAYOUT_CROSS_THREE_BY_FOUR)
{
faceRecs[0].x = (float)size; faceRecs[0].y = (float)size;
faceRecs[1].x = (float)size; faceRecs[1].y = (float)size*3;
faceRecs[2].x = (float)size; faceRecs[2].y = 0;
faceRecs[3].x = (float)size; faceRecs[3].y = (float)size*2;
faceRecs[4].x = 0; faceRecs[4].y = (float)size;
faceRecs[5].x = (float)size*2; faceRecs[5].y = (float)size;
}
else if (layout == CUBEMAP_LAYOUT_CROSS_FOUR_BY_THREE)
{
faceRecs[0].x = (float)size*2; faceRecs[0].y = (float)size;
faceRecs[1].x = 0; faceRecs[1].y = (float)size;
faceRecs[2].x = (float)size; faceRecs[2].y = 0;
faceRecs[3].x = (float)size; faceRecs[3].y = (float)size*2;
faceRecs[4].x = (float)size; faceRecs[4].y = (float)size;
faceRecs[5].x = (float)size*3; faceRecs[5].y = (float)size;
}
// Convert image data to 6 faces in a vertical column, that's the optimum layout for loading
faces = GenImageColor(size, size*6, MAGENTA);
ImageFormat(&faces, image.format);
// NOTE: Image formating does not work with compressed textures
for (int i = 0; i < 6; i++) ImageDraw(&faces, image, faceRecs[i], (Rectangle){ 0, (float)size*i, (float)size, (float)size }, WHITE);
}
// NOTE: Cubemap data is expected to be provided as 6 images in a single data array,
// one after the other (that's a vertical image), following convention: +X, -X, +Y, -Y, +Z, -Z
cubemap.id = rlLoadTextureCubemap(faces.data, size, faces.format);
if (cubemap.id == 0) TRACELOG(LOG_WARNING, "IMAGE: Failed to load cubemap image");
UnloadImage(faces);
}
else TRACELOG(LOG_WARNING, "IMAGE: Failed to detect cubemap image layout");
return cubemap;
}
// Load texture for rendering (framebuffer)
// NOTE: Render texture is loaded by default with RGBA color attachment and depth RenderBuffer
RenderTexture2D LoadRenderTexture(int width, int height)
{
RenderTexture2D target = { 0 };
target.id = rlLoadFramebuffer(width, height); // Load an empty framebuffer
if (target.id > 0)
{
rlEnableFramebuffer(target.id);
// Create color texture (default to RGBA)
target.texture.id = rlLoadTexture(NULL, width, height, PIXELFORMAT_UNCOMPRESSED_R8G8B8A8, 1);
target.texture.width = width;
target.texture.height = height;
target.texture.format = PIXELFORMAT_UNCOMPRESSED_R8G8B8A8;
target.texture.mipmaps = 1;
// Create depth renderbuffer/texture
target.depth.id = rlLoadTextureDepth(width, height, true);
target.depth.width = width;
target.depth.height = height;
target.depth.format = 19; //DEPTH_COMPONENT_24BIT?
target.depth.mipmaps = 1;
// Attach color texture and depth renderbuffer/texture to FBO
rlFramebufferAttach(target.id, target.texture.id, RL_ATTACHMENT_COLOR_CHANNEL0, RL_ATTACHMENT_TEXTURE2D, 0);
rlFramebufferAttach(target.id, target.depth.id, RL_ATTACHMENT_DEPTH, RL_ATTACHMENT_RENDERBUFFER, 0);
// Check if fbo is complete with attachments (valid)
if (rlFramebufferComplete(target.id)) TRACELOG(LOG_INFO, "FBO: [ID %i] Framebuffer object created successfully", target.id);
rlDisableFramebuffer();
}
else TRACELOG(LOG_WARNING, "FBO: Framebuffer object can not be created");
return target;
}
// Unload texture from GPU memory (VRAM)
void UnloadTexture(Texture2D texture)
{
if (texture.id > 0)
{
rlUnloadTexture(texture.id);
TRACELOG(LOG_INFO, "TEXTURE: [ID %i] Unloaded texture data from VRAM (GPU)", texture.id);
}
}
// Unload render texture from GPU memory (VRAM)
void UnloadRenderTexture(RenderTexture2D target)
{
if (target.id > 0)
{
// Color texture attached to FBO is deleted
rlUnloadTexture(target.texture.id);
// NOTE: Depth texture/renderbuffer is automatically
// queried and deleted before deleting framebuffer
rlUnloadFramebuffer(target.id);
}
}
// Update GPU texture with new data
// NOTE: pixels data must match texture.format
void UpdateTexture(Texture2D texture, const void *pixels)
{
rlUpdateTexture(texture.id, 0, 0, texture.width, texture.height, texture.format, pixels);
}
// Update GPU texture rectangle with new data
// NOTE: pixels data must match texture.format
void UpdateTextureRec(Texture2D texture, Rectangle rec, const void *pixels)
{
rlUpdateTexture(texture.id, (int)rec.x, (int)rec.y, (int)rec.width, (int)rec.height, texture.format, pixels);
}
//------------------------------------------------------------------------------------
// Texture configuration functions
//------------------------------------------------------------------------------------
// Generate GPU mipmaps for a texture
void GenTextureMipmaps(Texture2D *texture)
{
// NOTE: NPOT textures support check inside function
// On WebGL (OpenGL ES 2.0) NPOT textures support is limited
rlGenTextureMipmaps(texture->id, texture->width, texture->height, texture->format, &texture->mipmaps);
}
// Set texture scaling filter mode
void SetTextureFilter(Texture2D texture, int filter)
{
switch (filter)
{
case TEXTURE_FILTER_POINT:
{
if (texture.mipmaps > 1)
{
// RL_TEXTURE_FILTER_MIP_NEAREST - tex filter: POINT, mipmaps filter: POINT (sharp switching between mipmaps)
rlTextureParameters(texture.id, RL_TEXTURE_MIN_FILTER, RL_TEXTURE_FILTER_MIP_NEAREST);
// RL_TEXTURE_FILTER_NEAREST - tex filter: POINT (no filter), no mipmaps
rlTextureParameters(texture.id, RL_TEXTURE_MAG_FILTER, RL_TEXTURE_FILTER_NEAREST);
}
else
{
// RL_TEXTURE_FILTER_NEAREST - tex filter: POINT (no filter), no mipmaps
rlTextureParameters(texture.id, RL_TEXTURE_MIN_FILTER, RL_TEXTURE_FILTER_NEAREST);
rlTextureParameters(texture.id, RL_TEXTURE_MAG_FILTER, RL_TEXTURE_FILTER_NEAREST);
}
} break;
case TEXTURE_FILTER_BILINEAR:
{
if (texture.mipmaps > 1)
{
// RL_TEXTURE_FILTER_LINEAR_MIP_NEAREST - tex filter: BILINEAR, mipmaps filter: POINT (sharp switching between mipmaps)
// Alternative: RL_TEXTURE_FILTER_NEAREST_MIP_LINEAR - tex filter: POINT, mipmaps filter: BILINEAR (smooth transition between mipmaps)
rlTextureParameters(texture.id, RL_TEXTURE_MIN_FILTER, RL_TEXTURE_FILTER_LINEAR_MIP_NEAREST);
// RL_TEXTURE_FILTER_LINEAR - tex filter: BILINEAR, no mipmaps
rlTextureParameters(texture.id, RL_TEXTURE_MAG_FILTER, RL_TEXTURE_FILTER_LINEAR);
}
else
{
// RL_TEXTURE_FILTER_LINEAR - tex filter: BILINEAR, no mipmaps
rlTextureParameters(texture.id, RL_TEXTURE_MIN_FILTER, RL_TEXTURE_FILTER_LINEAR);
rlTextureParameters(texture.id, RL_TEXTURE_MAG_FILTER, RL_TEXTURE_FILTER_LINEAR);
}
} break;
case TEXTURE_FILTER_TRILINEAR:
{
if (texture.mipmaps > 1)
{
// RL_TEXTURE_FILTER_MIP_LINEAR - tex filter: BILINEAR, mipmaps filter: BILINEAR (smooth transition between mipmaps)
rlTextureParameters(texture.id, RL_TEXTURE_MIN_FILTER, RL_TEXTURE_FILTER_MIP_LINEAR);
// RL_TEXTURE_FILTER_LINEAR - tex filter: BILINEAR, no mipmaps
rlTextureParameters(texture.id, RL_TEXTURE_MAG_FILTER, RL_TEXTURE_FILTER_LINEAR);
}
else
{
TRACELOG(LOG_WARNING, "TEXTURE: [ID %i] No mipmaps available for TRILINEAR texture filtering", texture.id);
// RL_TEXTURE_FILTER_LINEAR - tex filter: BILINEAR, no mipmaps
rlTextureParameters(texture.id, RL_TEXTURE_MIN_FILTER, RL_TEXTURE_FILTER_LINEAR);
rlTextureParameters(texture.id, RL_TEXTURE_MAG_FILTER, RL_TEXTURE_FILTER_LINEAR);
}
} break;
case TEXTURE_FILTER_ANISOTROPIC_4X: rlTextureParameters(texture.id, RL_TEXTURE_FILTER_ANISOTROPIC, 4); break;
case TEXTURE_FILTER_ANISOTROPIC_8X: rlTextureParameters(texture.id, RL_TEXTURE_FILTER_ANISOTROPIC, 8); break;
case TEXTURE_FILTER_ANISOTROPIC_16X: rlTextureParameters(texture.id, RL_TEXTURE_FILTER_ANISOTROPIC, 16); break;
default: break;
}
}
// Set texture wrapping mode
void SetTextureWrap(Texture2D texture, int wrap)
{
switch (wrap)
{
case TEXTURE_WRAP_REPEAT:
{
// NOTE: It only works if NPOT textures are supported, i.e. OpenGL ES 2.0 could not support it
rlTextureParameters(texture.id, RL_TEXTURE_WRAP_S, RL_TEXTURE_WRAP_REPEAT);
rlTextureParameters(texture.id, RL_TEXTURE_WRAP_T, RL_TEXTURE_WRAP_REPEAT);
} break;
case TEXTURE_WRAP_CLAMP:
{
rlTextureParameters(texture.id, RL_TEXTURE_WRAP_S, RL_TEXTURE_WRAP_CLAMP);
rlTextureParameters(texture.id, RL_TEXTURE_WRAP_T, RL_TEXTURE_WRAP_CLAMP);
} break;
case TEXTURE_WRAP_MIRROR_REPEAT:
{
rlTextureParameters(texture.id, RL_TEXTURE_WRAP_S, RL_TEXTURE_WRAP_MIRROR_REPEAT);
rlTextureParameters(texture.id, RL_TEXTURE_WRAP_T, RL_TEXTURE_WRAP_MIRROR_REPEAT);
} break;
case TEXTURE_WRAP_MIRROR_CLAMP:
{
rlTextureParameters(texture.id, RL_TEXTURE_WRAP_S, RL_TEXTURE_WRAP_MIRROR_CLAMP);
rlTextureParameters(texture.id, RL_TEXTURE_WRAP_T, RL_TEXTURE_WRAP_MIRROR_CLAMP);
} break;
default: break;
}
}
//------------------------------------------------------------------------------------
// Texture drawing functions
//------------------------------------------------------------------------------------
// Draw a Texture2D
void DrawTexture(Texture2D texture, int posX, int posY, Color tint)
{
DrawTextureEx(texture, (Vector2){ (float)posX, (float)posY }, 0.0f, 1.0f, tint);
}
// Draw a Texture2D with position defined as Vector2
void DrawTextureV(Texture2D texture, Vector2 position, Color tint)
{
DrawTextureEx(texture, position, 0, 1.0f, tint);
}
// Draw a Texture2D with extended parameters
void DrawTextureEx(Texture2D texture, Vector2 position, float rotation, float scale, Color tint)
{
Rectangle source = { 0.0f, 0.0f, (float)texture.width, (float)texture.height };
Rectangle dest = { position.x, position.y, (float)texture.width*scale, (float)texture.height*scale };
Vector2 origin = { 0.0f, 0.0f };
DrawTexturePro(texture, source, dest, origin, rotation, tint);
}
// Draw a part of a texture (defined by a rectangle)
void DrawTextureRec(Texture2D texture, Rectangle source, Vector2 position, Color tint)
{
Rectangle dest = { position.x, position.y, fabsf(source.width), fabsf(source.height) };
Vector2 origin = { 0.0f, 0.0f };
DrawTexturePro(texture, source, dest, origin, 0.0f, tint);
}
// Draw texture quad with tiling and offset parameters
// NOTE: Tiling and offset should be provided considering normalized texture values [0..1]
// i.e tiling = { 1.0f, 1.0f } refers to all texture, offset = { 0.5f, 0.5f } moves texture origin to center
void DrawTextureQuad(Texture2D texture, Vector2 tiling, Vector2 offset, Rectangle quad, Color tint)
{
// WARNING: This solution only works if TEXTURE_WRAP_REPEAT is supported,
// NPOT textures supported is required and OpenGL ES 2.0 could not support it
Rectangle source = { offset.x*texture.width, offset.y*texture.height, tiling.x*texture.width, tiling.y*texture.height };
Vector2 origin = { 0.0f, 0.0f };
DrawTexturePro(texture, source, quad, origin, 0.0f, tint);
}
// Draw part of a texture (defined by a rectangle) with rotation and scale tiled into dest.
// NOTE: For tilling a whole texture DrawTextureQuad() is better
void DrawTextureTiled(Texture2D texture, Rectangle source, Rectangle dest, Vector2 origin, float rotation, float scale, Color tint)
{
if ((texture.id <= 0) || (scale <= 0.0f)) return; // Wanna see a infinite loop?!...just delete this line!
if ((source.width == 0) || (source.height == 0)) return;
int tileWidth = (int)(source.width*scale), tileHeight = (int)(source.height*scale);
if ((dest.width < tileWidth) && (dest.height < tileHeight))
{
// Can fit only one tile
DrawTexturePro(texture, (Rectangle){source.x, source.y, ((float)dest.width/tileWidth)*source.width, ((float)dest.height/tileHeight)*source.height},
(Rectangle){dest.x, dest.y, dest.width, dest.height}, origin, rotation, tint);
}
else if (dest.width <= tileWidth)
{
// Tiled vertically (one column)
int dy = 0;
for (;dy+tileHeight < dest.height; dy += tileHeight)
{
DrawTexturePro(texture, (Rectangle){source.x, source.y, ((float)dest.width/tileWidth)*source.width, source.height}, (Rectangle){dest.x, dest.y + dy, dest.width, (float)tileHeight}, origin, rotation, tint);
}
// Fit last tile
if (dy < dest.height)
{
DrawTexturePro(texture, (Rectangle){source.x, source.y, ((float)dest.width/tileWidth)*source.width, ((float)(dest.height - dy)/tileHeight)*source.height},
(Rectangle){dest.x, dest.y + dy, dest.width, dest.height - dy}, origin, rotation, tint);
}
}
else if (dest.height <= tileHeight)
{
// Tiled horizontally (one row)
int dx = 0;
for (;dx+tileWidth < dest.width; dx += tileWidth)
{
DrawTexturePro(texture, (Rectangle){source.x, source.y, source.width, ((float)dest.height/tileHeight)*source.height}, (Rectangle){dest.x + dx, dest.y, (float)tileWidth, dest.height}, origin, rotation, tint);
}
// Fit last tile
if (dx < dest.width)
{
DrawTexturePro(texture, (Rectangle){source.x, source.y, ((float)(dest.width - dx)/tileWidth)*source.width, ((float)dest.height/tileHeight)*source.height},
(Rectangle){dest.x + dx, dest.y, dest.width - dx, dest.height}, origin, rotation, tint);
}
}
else
{
// Tiled both horizontally and vertically (rows and columns)
int dx = 0;
for (;dx+tileWidth < dest.width; dx += tileWidth)
{
int dy = 0;
for (;dy+tileHeight < dest.height; dy += tileHeight)
{
DrawTexturePro(texture, source, (Rectangle){dest.x + dx, dest.y + dy, (float)tileWidth, (float)tileHeight}, origin, rotation, tint);
}
if (dy < dest.height)
{
DrawTexturePro(texture, (Rectangle){source.x, source.y, source.width, ((float)(dest.height - dy)/tileHeight)*source.height},
(Rectangle){dest.x + dx, dest.y + dy, (float)tileWidth, dest.height - dy}, origin, rotation, tint);
}
}
// Fit last column of tiles
if (dx < dest.width)
{
int dy = 0;
for (;dy+tileHeight < dest.height; dy += tileHeight)
{
DrawTexturePro(texture, (Rectangle){source.x, source.y, ((float)(dest.width - dx)/tileWidth)*source.width, source.height},
(Rectangle){dest.x + dx, dest.y + dy, dest.width - dx, (float)tileHeight}, origin, rotation, tint);
}
// Draw final tile in the bottom right corner
if (dy < dest.height)
{
DrawTexturePro(texture, (Rectangle){source.x, source.y, ((float)(dest.width - dx)/tileWidth)*source.width, ((float)(dest.height - dy)/tileHeight)*source.height},
(Rectangle){dest.x + dx, dest.y + dy, dest.width - dx, dest.height - dy}, origin, rotation, tint);
}
}
}
}
// Draw a part of a texture (defined by a rectangle) with 'pro' parameters
// NOTE: origin is relative to destination rectangle size
void DrawTexturePro(Texture2D texture, Rectangle source, Rectangle dest, Vector2 origin, float rotation, Color tint)
{
// Check if texture is valid
if (texture.id > 0)
{
float width = (float)texture.width;
float height = (float)texture.height;
bool flipX = false;
if (source.width < 0) { flipX = true; source.width *= -1; }
if (source.height < 0) source.y -= source.height;
Vector2 topLeft = { 0 };
Vector2 topRight = { 0 };
Vector2 bottomLeft = { 0 };
Vector2 bottomRight = { 0 };
// Only calculate rotation if needed
if (rotation == 0.0f)
{
float x = dest.x - origin.x;
float y = dest.y - origin.y;
topLeft = (Vector2){ x, y };
topRight = (Vector2){ x + dest.width, y };
bottomLeft = (Vector2){ x, y + dest.height };
bottomRight = (Vector2){ x + dest.width, y + dest.height };
}
else
{
float sinRotation = sinf(rotation*DEG2RAD);
float cosRotation = cosf(rotation*DEG2RAD);
float x = dest.x;
float y = dest.y;
float dx = -origin.x;
float dy = -origin.y;
topLeft.x = x + dx*cosRotation - dy*sinRotation;
topLeft.y = y + dx*sinRotation + dy*cosRotation;
topRight.x = x + (dx + dest.width)*cosRotation - dy*sinRotation;
topRight.y = y + (dx + dest.width)*sinRotation + dy*cosRotation;
bottomLeft.x = x + dx*cosRotation - (dy + dest.height)*sinRotation;
bottomLeft.y = y + dx*sinRotation + (dy + dest.height)*cosRotation;
bottomRight.x = x + (dx + dest.width)*cosRotation - (dy + dest.height)*sinRotation;
bottomRight.y = y + (dx + dest.width)*sinRotation + (dy + dest.height)*cosRotation;
}
rlCheckRenderBatchLimit(4); // Make sure there is enough free space on the batch buffer
rlSetTexture(texture.id);
rlBegin(RL_QUADS);
rlColor4ub(tint.r, tint.g, tint.b, tint.a);
rlNormal3f(0.0f, 0.0f, 1.0f); // Normal vector pointing towards viewer
// Top-left corner for texture and quad
if (flipX) rlTexCoord2f((source.x + source.width)/width, source.y/height);
else rlTexCoord2f(source.x/width, source.y/height);
rlVertex2f(topLeft.x, topLeft.y);
// Bottom-left corner for texture and quad
if (flipX) rlTexCoord2f((source.x + source.width)/width, (source.y + source.height)/height);
else rlTexCoord2f(source.x/width, (source.y + source.height)/height);
rlVertex2f(bottomLeft.x, bottomLeft.y);
// Bottom-right corner for texture and quad
if (flipX) rlTexCoord2f(source.x/width, (source.y + source.height)/height);
else rlTexCoord2f((source.x + source.width)/width, (source.y + source.height)/height);
rlVertex2f(bottomRight.x, bottomRight.y);
// Top-right corner for texture and quad
if (flipX) rlTexCoord2f(source.x/width, source.y/height);
else rlTexCoord2f((source.x + source.width)/width, source.y/height);
rlVertex2f(topRight.x, topRight.y);
rlEnd();
rlSetTexture(0);
// NOTE: Vertex position can be transformed using matrices
// but the process is way more costly than just calculating
// the vertex positions manually, like done above.
// I leave here the old implementation for educational pourposes,
// just in case someone wants to do some performance test
/*
rlSetTexture(texture.id);
rlPushMatrix();
rlTranslatef(dest.x, dest.y, 0.0f);
if (rotation != 0.0f) rlRotatef(rotation, 0.0f, 0.0f, 1.0f);
rlTranslatef(-origin.x, -origin.y, 0.0f);
rlBegin(RL_QUADS);
rlColor4ub(tint.r, tint.g, tint.b, tint.a);
rlNormal3f(0.0f, 0.0f, 1.0f); // Normal vector pointing towards viewer
// Bottom-left corner for texture and quad
if (flipX) rlTexCoord2f((source.x + source.width)/width, source.y/height);
else rlTexCoord2f(source.x/width, source.y/height);
rlVertex2f(0.0f, 0.0f);
// Bottom-right corner for texture and quad
if (flipX) rlTexCoord2f((source.x + source.width)/width, (source.y + source.height)/height);
else rlTexCoord2f(source.x/width, (source.y + source.height)/height);
rlVertex2f(0.0f, dest.height);
// Top-right corner for texture and quad
if (flipX) rlTexCoord2f(source.x/width, (source.y + source.height)/height);
else rlTexCoord2f((source.x + source.width)/width, (source.y + source.height)/height);
rlVertex2f(dest.width, dest.height);
// Top-left corner for texture and quad
if (flipX) rlTexCoord2f(source.x/width, source.y/height);
else rlTexCoord2f((source.x + source.width)/width, source.y/height);
rlVertex2f(dest.width, 0.0f);
rlEnd();
rlPopMatrix();
rlSetTexture(0);
*/
}
}
// Draws a texture (or part of it) that stretches or shrinks nicely using n-patch info
void DrawTextureNPatch(Texture2D texture, NPatchInfo nPatchInfo, Rectangle dest, Vector2 origin, float rotation, Color tint)
{
if (texture.id > 0)
{
float width = (float)texture.width;
float height = (float)texture.height;
float patchWidth = ((int)dest.width <= 0)? 0.0f : dest.width;
float patchHeight = ((int)dest.height <= 0)? 0.0f : dest.height;
if (nPatchInfo.source.width < 0) nPatchInfo.source.x -= nPatchInfo.source.width;
if (nPatchInfo.source.height < 0) nPatchInfo.source.y -= nPatchInfo.source.height;
if (nPatchInfo.layout == NPATCH_THREE_PATCH_HORIZONTAL) patchHeight = nPatchInfo.source.height;
if (nPatchInfo.layout == NPATCH_THREE_PATCH_VERTICAL) patchWidth = nPatchInfo.source.width;
bool drawCenter = true;
bool drawMiddle = true;
float leftBorder = (float)nPatchInfo.left;
float topBorder = (float)nPatchInfo.top;
float rightBorder = (float)nPatchInfo.right;
float bottomBorder = (float)nPatchInfo.bottom;
// Adjust the lateral (left and right) border widths in case patchWidth < texture.width
if (patchWidth <= (leftBorder + rightBorder) && nPatchInfo.layout != NPATCH_THREE_PATCH_VERTICAL)
{
drawCenter = false;
leftBorder = (leftBorder/(leftBorder + rightBorder))*patchWidth;
rightBorder = patchWidth - leftBorder;
}
// Adjust the lateral (top and bottom) border heights in case patchHeight < texture.height
if (patchHeight <= (topBorder + bottomBorder) && nPatchInfo.layout != NPATCH_THREE_PATCH_HORIZONTAL)
{
drawMiddle = false;
topBorder = (topBorder/(topBorder + bottomBorder))*patchHeight;
bottomBorder = patchHeight - topBorder;
}
Vector2 vertA, vertB, vertC, vertD;
vertA.x = 0.0f; // outer left
vertA.y = 0.0f; // outer top
vertB.x = leftBorder; // inner left
vertB.y = topBorder; // inner top
vertC.x = patchWidth - rightBorder; // inner right
vertC.y = patchHeight - bottomBorder; // inner bottom
vertD.x = patchWidth; // outer right
vertD.y = patchHeight; // outer bottom
Vector2 coordA, coordB, coordC, coordD;
coordA.x = nPatchInfo.source.x/width;
coordA.y = nPatchInfo.source.y/height;
coordB.x = (nPatchInfo.source.x + leftBorder)/width;
coordB.y = (nPatchInfo.source.y + topBorder)/height;
coordC.x = (nPatchInfo.source.x + nPatchInfo.source.width - rightBorder)/width;
coordC.y = (nPatchInfo.source.y + nPatchInfo.source.height - bottomBorder)/height;
coordD.x = (nPatchInfo.source.x + nPatchInfo.source.width)/width;
coordD.y = (nPatchInfo.source.y + nPatchInfo.source.height)/height;
rlSetTexture(texture.id);
rlPushMatrix();
rlTranslatef(dest.x, dest.y, 0.0f);
rlRotatef(rotation, 0.0f, 0.0f, 1.0f);
rlTranslatef(-origin.x, -origin.y, 0.0f);
rlBegin(RL_QUADS);
rlColor4ub(tint.r, tint.g, tint.b, tint.a);
rlNormal3f(0.0f, 0.0f, 1.0f); // Normal vector pointing towards viewer
if (nPatchInfo.layout == NPATCH_NINE_PATCH)
{
// ------------------------------------------------------------
// TOP-LEFT QUAD
rlTexCoord2f(coordA.x, coordB.y); rlVertex2f(vertA.x, vertB.y); // Bottom-left corner for texture and quad
rlTexCoord2f(coordB.x, coordB.y); rlVertex2f(vertB.x, vertB.y); // Bottom-right corner for texture and quad
rlTexCoord2f(coordB.x, coordA.y); rlVertex2f(vertB.x, vertA.y); // Top-right corner for texture and quad
rlTexCoord2f(coordA.x, coordA.y); rlVertex2f(vertA.x, vertA.y); // Top-left corner for texture and quad
if (drawCenter)
{
// TOP-CENTER QUAD
rlTexCoord2f(coordB.x, coordB.y); rlVertex2f(vertB.x, vertB.y); // Bottom-left corner for texture and quad
rlTexCoord2f(coordC.x, coordB.y); rlVertex2f(vertC.x, vertB.y); // Bottom-right corner for texture and quad
rlTexCoord2f(coordC.x, coordA.y); rlVertex2f(vertC.x, vertA.y); // Top-right corner for texture and quad
rlTexCoord2f(coordB.x, coordA.y); rlVertex2f(vertB.x, vertA.y); // Top-left corner for texture and quad
}
// TOP-RIGHT QUAD
rlTexCoord2f(coordC.x, coordB.y); rlVertex2f(vertC.x, vertB.y); // Bottom-left corner for texture and quad
rlTexCoord2f(coordD.x, coordB.y); rlVertex2f(vertD.x, vertB.y); // Bottom-right corner for texture and quad
rlTexCoord2f(coordD.x, coordA.y); rlVertex2f(vertD.x, vertA.y); // Top-right corner for texture and quad
rlTexCoord2f(coordC.x, coordA.y); rlVertex2f(vertC.x, vertA.y); // Top-left corner for texture and quad
if (drawMiddle)
{
// ------------------------------------------------------------
// MIDDLE-LEFT QUAD
rlTexCoord2f(coordA.x, coordC.y); rlVertex2f(vertA.x, vertC.y); // Bottom-left corner for texture and quad
rlTexCoord2f(coordB.x, coordC.y); rlVertex2f(vertB.x, vertC.y); // Bottom-right corner for texture and quad
rlTexCoord2f(coordB.x, coordB.y); rlVertex2f(vertB.x, vertB.y); // Top-right corner for texture and quad
rlTexCoord2f(coordA.x, coordB.y); rlVertex2f(vertA.x, vertB.y); // Top-left corner for texture and quad
if (drawCenter)
{
// MIDDLE-CENTER QUAD
rlTexCoord2f(coordB.x, coordC.y); rlVertex2f(vertB.x, vertC.y); // Bottom-left corner for texture and quad
rlTexCoord2f(coordC.x, coordC.y); rlVertex2f(vertC.x, vertC.y); // Bottom-right corner for texture and quad
rlTexCoord2f(coordC.x, coordB.y); rlVertex2f(vertC.x, vertB.y); // Top-right corner for texture and quad
rlTexCoord2f(coordB.x, coordB.y); rlVertex2f(vertB.x, vertB.y); // Top-left corner for texture and quad
}
// MIDDLE-RIGHT QUAD
rlTexCoord2f(coordC.x, coordC.y); rlVertex2f(vertC.x, vertC.y); // Bottom-left corner for texture and quad
rlTexCoord2f(coordD.x, coordC.y); rlVertex2f(vertD.x, vertC.y); // Bottom-right corner for texture and quad
rlTexCoord2f(coordD.x, coordB.y); rlVertex2f(vertD.x, vertB.y); // Top-right corner for texture and quad
rlTexCoord2f(coordC.x, coordB.y); rlVertex2f(vertC.x, vertB.y); // Top-left corner for texture and quad
}
// ------------------------------------------------------------
// BOTTOM-LEFT QUAD
rlTexCoord2f(coordA.x, coordD.y); rlVertex2f(vertA.x, vertD.y); // Bottom-left corner for texture and quad
rlTexCoord2f(coordB.x, coordD.y); rlVertex2f(vertB.x, vertD.y); // Bottom-right corner for texture and quad
rlTexCoord2f(coordB.x, coordC.y); rlVertex2f(vertB.x, vertC.y); // Top-right corner for texture and quad
rlTexCoord2f(coordA.x, coordC.y); rlVertex2f(vertA.x, vertC.y); // Top-left corner for texture and quad
if (drawCenter)
{
// BOTTOM-CENTER QUAD
rlTexCoord2f(coordB.x, coordD.y); rlVertex2f(vertB.x, vertD.y); // Bottom-left corner for texture and quad
rlTexCoord2f(coordC.x, coordD.y); rlVertex2f(vertC.x, vertD.y); // Bottom-right corner for texture and quad
rlTexCoord2f(coordC.x, coordC.y); rlVertex2f(vertC.x, vertC.y); // Top-right corner for texture and quad
rlTexCoord2f(coordB.x, coordC.y); rlVertex2f(vertB.x, vertC.y); // Top-left corner for texture and quad
}
// BOTTOM-RIGHT QUAD
rlTexCoord2f(coordC.x, coordD.y); rlVertex2f(vertC.x, vertD.y); // Bottom-left corner for texture and quad
rlTexCoord2f(coordD.x, coordD.y); rlVertex2f(vertD.x, vertD.y); // Bottom-right corner for texture and quad
rlTexCoord2f(coordD.x, coordC.y); rlVertex2f(vertD.x, vertC.y); // Top-right corner for texture and quad
rlTexCoord2f(coordC.x, coordC.y); rlVertex2f(vertC.x, vertC.y); // Top-left corner for texture and quad
}
else if (nPatchInfo.layout == NPATCH_THREE_PATCH_VERTICAL)
{
// TOP QUAD
// -----------------------------------------------------------
// Texture coords Vertices
rlTexCoord2f(coordA.x, coordB.y); rlVertex2f(vertA.x, vertB.y); // Bottom-left corner for texture and quad
rlTexCoord2f(coordD.x, coordB.y); rlVertex2f(vertD.x, vertB.y); // Bottom-right corner for texture and quad
rlTexCoord2f(coordD.x, coordA.y); rlVertex2f(vertD.x, vertA.y); // Top-right corner for texture and quad
rlTexCoord2f(coordA.x, coordA.y); rlVertex2f(vertA.x, vertA.y); // Top-left corner for texture and quad
if (drawCenter)
{
// MIDDLE QUAD
// -----------------------------------------------------------
// Texture coords Vertices
rlTexCoord2f(coordA.x, coordC.y); rlVertex2f(vertA.x, vertC.y); // Bottom-left corner for texture and quad
rlTexCoord2f(coordD.x, coordC.y); rlVertex2f(vertD.x, vertC.y); // Bottom-right corner for texture and quad
rlTexCoord2f(coordD.x, coordB.y); rlVertex2f(vertD.x, vertB.y); // Top-right corner for texture and quad
rlTexCoord2f(coordA.x, coordB.y); rlVertex2f(vertA.x, vertB.y); // Top-left corner for texture and quad
}
// BOTTOM QUAD
// -----------------------------------------------------------
// Texture coords Vertices
rlTexCoord2f(coordA.x, coordD.y); rlVertex2f(vertA.x, vertD.y); // Bottom-left corner for texture and quad
rlTexCoord2f(coordD.x, coordD.y); rlVertex2f(vertD.x, vertD.y); // Bottom-right corner for texture and quad
rlTexCoord2f(coordD.x, coordC.y); rlVertex2f(vertD.x, vertC.y); // Top-right corner for texture and quad
rlTexCoord2f(coordA.x, coordC.y); rlVertex2f(vertA.x, vertC.y); // Top-left corner for texture and quad
}
else if (nPatchInfo.layout == NPATCH_THREE_PATCH_HORIZONTAL)
{
// LEFT QUAD
// -----------------------------------------------------------
// Texture coords Vertices
rlTexCoord2f(coordA.x, coordD.y); rlVertex2f(vertA.x, vertD.y); // Bottom-left corner for texture and quad
rlTexCoord2f(coordB.x, coordD.y); rlVertex2f(vertB.x, vertD.y); // Bottom-right corner for texture and quad
rlTexCoord2f(coordB.x, coordA.y); rlVertex2f(vertB.x, vertA.y); // Top-right corner for texture and quad
rlTexCoord2f(coordA.x, coordA.y); rlVertex2f(vertA.x, vertA.y); // Top-left corner for texture and quad
if (drawCenter)
{
// CENTER QUAD
// -----------------------------------------------------------
// Texture coords Vertices
rlTexCoord2f(coordB.x, coordD.y); rlVertex2f(vertB.x, vertD.y); // Bottom-left corner for texture and quad
rlTexCoord2f(coordC.x, coordD.y); rlVertex2f(vertC.x, vertD.y); // Bottom-right corner for texture and quad
rlTexCoord2f(coordC.x, coordA.y); rlVertex2f(vertC.x, vertA.y); // Top-right corner for texture and quad
rlTexCoord2f(coordB.x, coordA.y); rlVertex2f(vertB.x, vertA.y); // Top-left corner for texture and quad
}
// RIGHT QUAD
// -----------------------------------------------------------
// Texture coords Vertices
rlTexCoord2f(coordC.x, coordD.y); rlVertex2f(vertC.x, vertD.y); // Bottom-left corner for texture and quad
rlTexCoord2f(coordD.x, coordD.y); rlVertex2f(vertD.x, vertD.y); // Bottom-right corner for texture and quad
rlTexCoord2f(coordD.x, coordA.y); rlVertex2f(vertD.x, vertA.y); // Top-right corner for texture and quad
rlTexCoord2f(coordC.x, coordA.y); rlVertex2f(vertC.x, vertA.y); // Top-left corner for texture and quad
}
rlEnd();
rlPopMatrix();
rlSetTexture(0);
}
}
// Draw textured polygon, defined by vertex and texturecoordinates
// NOTE: Polygon center must have straight line path to all points
// without crossing perimeter, points must be in anticlockwise order
void DrawTexturePoly(Texture2D texture, Vector2 center, Vector2 *points, Vector2 *texcoords, int pointCount, Color tint)
{
rlCheckRenderBatchLimit((pointCount - 1)*4);
rlSetTexture(texture.id);
// Texturing is only supported on QUADs
rlBegin(RL_QUADS);
rlColor4ub(tint.r, tint.g, tint.b, tint.a);
for (int i = 0; i < pointCount - 1; i++)
{
rlTexCoord2f(0.5f, 0.5f);
rlVertex2f(center.x, center.y);
rlTexCoord2f(texcoords[i].x, texcoords[i].y);
rlVertex2f(points[i].x + center.x, points[i].y + center.y);
rlTexCoord2f(texcoords[i + 1].x, texcoords[i + 1].y);
rlVertex2f(points[i + 1].x + center.x, points[i + 1].y + center.y);
rlTexCoord2f(texcoords[i + 1].x, texcoords[i + 1].y);
rlVertex2f(points[i + 1].x + center.x, points[i + 1].y + center.y);
}
rlEnd();
rlSetTexture(0);
}
// Get color with alpha applied, alpha goes from 0.0f to 1.0f
Color Fade(Color color, float alpha)
{
if (alpha < 0.0f) alpha = 0.0f;
else if (alpha > 1.0f) alpha = 1.0f;
return (Color){color.r, color.g, color.b, (unsigned char)(255.0f*alpha)};
}
// Get hexadecimal value for a Color
int ColorToInt(Color color)
{
return (((int)color.r << 24) | ((int)color.g << 16) | ((int)color.b << 8) | (int)color.a);
}
// Get color normalized as float [0..1]
Vector4 ColorNormalize(Color color)
{
Vector4 result;
result.x = (float)color.r/255.0f;
result.y = (float)color.g/255.0f;
result.z = (float)color.b/255.0f;
result.w = (float)color.a/255.0f;
return result;
}
// Get color from normalized values [0..1]
Color ColorFromNormalized(Vector4 normalized)
{
Color result;
result.r = (unsigned char)(normalized.x*255.0f);
result.g = (unsigned char)(normalized.y*255.0f);
result.b = (unsigned char)(normalized.z*255.0f);
result.a = (unsigned char)(normalized.w*255.0f);
return result;
}
// Get HSV values for a Color
// NOTE: Hue is returned as degrees [0..360]
Vector3 ColorToHSV(Color color)
{
Vector3 hsv = { 0 };
Vector3 rgb = { (float)color.r/255.0f, (float)color.g/255.0f, (float)color.b/255.0f };
float min, max, delta;
min = rgb.x < rgb.y? rgb.x : rgb.y;
min = min < rgb.z? min : rgb.z;
max = rgb.x > rgb.y? rgb.x : rgb.y;
max = max > rgb.z? max : rgb.z;
hsv.z = max; // Value
delta = max - min;
if (delta < 0.00001f)
{
hsv.y = 0.0f;
hsv.x = 0.0f; // Undefined, maybe NAN?
return hsv;
}
if (max > 0.0f)
{
// NOTE: If max is 0, this divide would cause a crash
hsv.y = (delta/max); // Saturation
}
else
{
// NOTE: If max is 0, then r = g = b = 0, s = 0, h is undefined
hsv.y = 0.0f;
hsv.x = NAN; // Undefined
return hsv;
}
// NOTE: Comparing float values could not work properly
if (rgb.x >= max) hsv.x = (rgb.y - rgb.z)/delta; // Between yellow & magenta
else
{
if (rgb.y >= max) hsv.x = 2.0f + (rgb.z - rgb.x)/delta; // Between cyan & yellow
else hsv.x = 4.0f + (rgb.x - rgb.y)/delta; // Between magenta & cyan
}
hsv.x *= 60.0f; // Convert to degrees
if (hsv.x < 0.0f) hsv.x += 360.0f;
return hsv;
}
// Get a Color from HSV values
// Implementation reference: https://en.wikipedia.org/wiki/HSL_and_HSV#Alternative_HSV_conversion
// NOTE: Color->HSV->Color conversion will not yield exactly the same color due to rounding errors
// Hue is provided in degrees: [0..360]
// Saturation/Value are provided normalized: [0.0f..1.0f]
Color ColorFromHSV(float hue, float saturation, float value)
{
Color color = { 0, 0, 0, 255 };
// Red channel
float k = fmodf((5.0f + hue/60.0f), 6);
float t = 4.0f - k;
k = (t < k)? t : k;
k = (k < 1)? k : 1;
k = (k > 0)? k : 0;
color.r = (unsigned char)((value - value*saturation*k)*255.0f);
// Green channel
k = fmodf((3.0f + hue/60.0f), 6);
t = 4.0f - k;
k = (t < k)? t : k;
k = (k < 1)? k : 1;
k = (k > 0)? k : 0;
color.g = (unsigned char)((value - value*saturation*k)*255.0f);
// Blue channel
k = fmodf((1.0f + hue/60.0f), 6);
t = 4.0f - k;
k = (t < k)? t : k;
k = (k < 1)? k : 1;
k = (k > 0)? k : 0;
color.b = (unsigned char)((value - value*saturation*k)*255.0f);
return color;
}
// Get color with alpha applied, alpha goes from 0.0f to 1.0f
Color ColorAlpha(Color color, float alpha)
{
if (alpha < 0.0f) alpha = 0.0f;
else if (alpha > 1.0f) alpha = 1.0f;
return (Color){color.r, color.g, color.b, (unsigned char)(255.0f*alpha)};
}
// Get src alpha-blended into dst color with tint
Color ColorAlphaBlend(Color dst, Color src, Color tint)
{
Color out = WHITE;
// Apply color tint to source color
src.r = (unsigned char)(((unsigned int)src.r*(unsigned int)tint.r) >> 8);
src.g = (unsigned char)(((unsigned int)src.g*(unsigned int)tint.g) >> 8);
src.b = (unsigned char)(((unsigned int)src.b*(unsigned int)tint.b) >> 8);
src.a = (unsigned char)(((unsigned int)src.a*(unsigned int)tint.a) >> 8);
//#define COLORALPHABLEND_FLOAT
#define COLORALPHABLEND_INTEGERS
#if defined(COLORALPHABLEND_INTEGERS)
if (src.a == 0) out = dst;
else if (src.a == 255) out = src;
else
{
unsigned int alpha = (unsigned int)src.a + 1; // We are shifting by 8 (dividing by 256), so we need to take that excess into account
out.a = (unsigned char)(((unsigned int)alpha*256 + (unsigned int)dst.a*(256 - alpha)) >> 8);
if (out.a > 0)
{
out.r = (unsigned char)((((unsigned int)src.r*alpha*256 + (unsigned int)dst.r*(unsigned int)dst.a*(256 - alpha))/out.a) >> 8);
out.g = (unsigned char)((((unsigned int)src.g*alpha*256 + (unsigned int)dst.g*(unsigned int)dst.a*(256 - alpha))/out.a) >> 8);
out.b = (unsigned char)((((unsigned int)src.b*alpha*256 + (unsigned int)dst.b*(unsigned int)dst.a*(256 - alpha))/out.a) >> 8);
}
}
#endif
#if defined(COLORALPHABLEND_FLOAT)
if (src.a == 0) out = dst;
else if (src.a == 255) out = src;
else
{
Vector4 fdst = ColorNormalize(dst);
Vector4 fsrc = ColorNormalize(src);
Vector4 ftint = ColorNormalize(tint);
Vector4 fout = { 0 };
fout.w = fsrc.w + fdst.w*(1.0f - fsrc.w);
if (fout.w > 0.0f)
{
fout.x = (fsrc.x*fsrc.w + fdst.x*fdst.w*(1 - fsrc.w))/fout.w;
fout.y = (fsrc.y*fsrc.w + fdst.y*fdst.w*(1 - fsrc.w))/fout.w;
fout.z = (fsrc.z*fsrc.w + fdst.z*fdst.w*(1 - fsrc.w))/fout.w;
}
out = (Color){ (unsigned char)(fout.x*255.0f), (unsigned char)(fout.y*255.0f), (unsigned char)(fout.z*255.0f), (unsigned char)(fout.w*255.0f) };
}
#endif
return out;
}
// Get a Color struct from hexadecimal value
Color GetColor(unsigned int hexValue)
{
Color color;
color.r = (unsigned char)(hexValue >> 24) & 0xFF;
color.g = (unsigned char)(hexValue >> 16) & 0xFF;
color.b = (unsigned char)(hexValue >> 8) & 0xFF;
color.a = (unsigned char)hexValue & 0xFF;
return color;
}
// Get color from a pixel from certain format
Color GetPixelColor(void *srcPtr, int format)
{
Color color = { 0 };
switch (format)
{
case PIXELFORMAT_UNCOMPRESSED_GRAYSCALE: color = (Color){ ((unsigned char *)srcPtr)[0], ((unsigned char *)srcPtr)[0], ((unsigned char *)srcPtr)[0], 255 }; break;
case PIXELFORMAT_UNCOMPRESSED_GRAY_ALPHA: color = (Color){ ((unsigned char *)srcPtr)[0], ((unsigned char *)srcPtr)[0], ((unsigned char *)srcPtr)[0], ((unsigned char *)srcPtr)[1] }; break;
case PIXELFORMAT_UNCOMPRESSED_R5G6B5:
{
color.r = (unsigned char)((((unsigned short *)srcPtr)[0] >> 11)*255/31);
color.g = (unsigned char)(((((unsigned short *)srcPtr)[0] >> 5) & 0b0000000000111111)*255/63);
color.b = (unsigned char)((((unsigned short *)srcPtr)[0] & 0b0000000000011111)*255/31);
color.a = 255;
} break;
case PIXELFORMAT_UNCOMPRESSED_R5G5B5A1:
{
color.r = (unsigned char)((((unsigned short *)srcPtr)[0] >> 11)*255/31);
color.g = (unsigned char)(((((unsigned short *)srcPtr)[0] >> 6) & 0b0000000000011111)*255/31);
color.b = (unsigned char)((((unsigned short *)srcPtr)[0] & 0b0000000000011111)*255/31);
color.a = (((unsigned short *)srcPtr)[0] & 0b0000000000000001)? 255 : 0;
} break;
case PIXELFORMAT_UNCOMPRESSED_R4G4B4A4:
{
color.r = (unsigned char)((((unsigned short *)srcPtr)[0] >> 12)*255/15);
color.g = (unsigned char)(((((unsigned short *)srcPtr)[0] >> 8) & 0b0000000000001111)*255/15);
color.b = (unsigned char)(((((unsigned short *)srcPtr)[0] >> 4) & 0b0000000000001111)*255/15);
color.a = (unsigned char)((((unsigned short *)srcPtr)[0] & 0b0000000000001111)*255/15);
} break;
case PIXELFORMAT_UNCOMPRESSED_R8G8B8A8: color = (Color){ ((unsigned char *)srcPtr)[0], ((unsigned char *)srcPtr)[1], ((unsigned char *)srcPtr)[2], ((unsigned char *)srcPtr)[3] }; break;
case PIXELFORMAT_UNCOMPRESSED_R8G8B8: color = (Color){ ((unsigned char *)srcPtr)[0], ((unsigned char *)srcPtr)[1], ((unsigned char *)srcPtr)[2], 255 }; break;
case PIXELFORMAT_UNCOMPRESSED_R32:
{
// NOTE: Pixel normalized float value is converted to [0..255]
color.r = (unsigned char)(((float *)srcPtr)[0]*255.0f);
color.g = (unsigned char)(((float *)srcPtr)[0]*255.0f);
color.b = (unsigned char)(((float *)srcPtr)[0]*255.0f);
color.a = 255;
} break;
case PIXELFORMAT_UNCOMPRESSED_R32G32B32:
{
// NOTE: Pixel normalized float value is converted to [0..255]
color.r = (unsigned char)(((float *)srcPtr)[0]*255.0f);
color.g = (unsigned char)(((float *)srcPtr)[1]*255.0f);
color.b = (unsigned char)(((float *)srcPtr)[2]*255.0f);
color.a = 255;
} break;
case PIXELFORMAT_UNCOMPRESSED_R32G32B32A32:
{
// NOTE: Pixel normalized float value is converted to [0..255]
color.r = (unsigned char)(((float *)srcPtr)[0]*255.0f);
color.g = (unsigned char)(((float *)srcPtr)[1]*255.0f);
color.b = (unsigned char)(((float *)srcPtr)[2]*255.0f);
color.a = (unsigned char)(((float *)srcPtr)[3]*255.0f);
} break;
default: break;
}
return color;
}
// Set pixel color formatted into destination pointer
void SetPixelColor(void *dstPtr, Color color, int format)
{
switch (format)
{
case PIXELFORMAT_UNCOMPRESSED_GRAYSCALE:
{
// NOTE: Calculate grayscale equivalent color
Vector3 coln = { (float)color.r/255.0f, (float)color.g/255.0f, (float)color.b/255.0f };
unsigned char gray = (unsigned char)((coln.x*0.299f + coln.y*0.587f + coln.z*0.114f)*255.0f);
((unsigned char *)dstPtr)[0] = gray;
} break;
case PIXELFORMAT_UNCOMPRESSED_GRAY_ALPHA:
{
// NOTE: Calculate grayscale equivalent color
Vector3 coln = { (float)color.r/255.0f, (float)color.g/255.0f, (float)color.b/255.0f };
unsigned char gray = (unsigned char)((coln.x*0.299f + coln.y*0.587f + coln.z*0.114f)*255.0f);
((unsigned char *)dstPtr)[0] = gray;
((unsigned char *)dstPtr)[1] = color.a;
} break;
case PIXELFORMAT_UNCOMPRESSED_R5G6B5:
{
// NOTE: Calculate R5G6B5 equivalent color
Vector3 coln = { (float)color.r/255.0f, (float)color.g/255.0f, (float)color.b/255.0f };
unsigned char r = (unsigned char)(round(coln.x*31.0f));
unsigned char g = (unsigned char)(round(coln.y*63.0f));
unsigned char b = (unsigned char)(round(coln.z*31.0f));
((unsigned short *)dstPtr)[0] = (unsigned short)r << 11 | (unsigned short)g << 5 | (unsigned short)b;
} break;
case PIXELFORMAT_UNCOMPRESSED_R5G5B5A1:
{
// NOTE: Calculate R5G5B5A1 equivalent color
Vector4 coln = { (float)color.r/255.0f, (float)color.g/255.0f, (float)color.b/255.0f, (float)color.a/255.0f };
unsigned char r = (unsigned char)(round(coln.x*31.0f));
unsigned char g = (unsigned char)(round(coln.y*31.0f));
unsigned char b = (unsigned char)(round(coln.z*31.0f));
unsigned char a = (coln.w > ((float)PIXELFORMAT_UNCOMPRESSED_R5G5B5A1_ALPHA_THRESHOLD/255.0f))? 1 : 0;
((unsigned short *)dstPtr)[0] = (unsigned short)r << 11 | (unsigned short)g << 6 | (unsigned short)b << 1 | (unsigned short)a;
} break;
case PIXELFORMAT_UNCOMPRESSED_R4G4B4A4:
{
// NOTE: Calculate R5G5B5A1 equivalent color
Vector4 coln = { (float)color.r/255.0f, (float)color.g/255.0f, (float)color.b/255.0f, (float)color.a/255.0f };
unsigned char r = (unsigned char)(round(coln.x*15.0f));
unsigned char g = (unsigned char)(round(coln.y*15.0f));
unsigned char b = (unsigned char)(round(coln.z*15.0f));
unsigned char a = (unsigned char)(round(coln.w*15.0f));
((unsigned short *)dstPtr)[0] = (unsigned short)r << 12 | (unsigned short)g << 8 | (unsigned short)b << 4 | (unsigned short)a;
} break;
case PIXELFORMAT_UNCOMPRESSED_R8G8B8:
{
((unsigned char *)dstPtr)[0] = color.r;
((unsigned char *)dstPtr)[1] = color.g;
((unsigned char *)dstPtr)[2] = color.b;
} break;
case PIXELFORMAT_UNCOMPRESSED_R8G8B8A8:
{
((unsigned char *)dstPtr)[0] = color.r;
((unsigned char *)dstPtr)[1] = color.g;
((unsigned char *)dstPtr)[2] = color.b;
((unsigned char *)dstPtr)[3] = color.a;
} break;
default: break;
}
}
// Get pixel data size in bytes for certain format
// NOTE: Size can be requested for Image or Texture data
int GetPixelDataSize(int width, int height, int format)
{
int dataSize = 0; // Size in bytes
int bpp = 0; // Bits per pixel
switch (format)
{
case PIXELFORMAT_UNCOMPRESSED_GRAYSCALE: bpp = 8; break;
case PIXELFORMAT_UNCOMPRESSED_GRAY_ALPHA:
case PIXELFORMAT_UNCOMPRESSED_R5G6B5:
case PIXELFORMAT_UNCOMPRESSED_R5G5B5A1:
case PIXELFORMAT_UNCOMPRESSED_R4G4B4A4: bpp = 16; break;
case PIXELFORMAT_UNCOMPRESSED_R8G8B8A8: bpp = 32; break;
case PIXELFORMAT_UNCOMPRESSED_R8G8B8: bpp = 24; break;
case PIXELFORMAT_UNCOMPRESSED_R32: bpp = 32; break;
case PIXELFORMAT_UNCOMPRESSED_R32G32B32: bpp = 32*3; break;
case PIXELFORMAT_UNCOMPRESSED_R32G32B32A32: bpp = 32*4; break;
case PIXELFORMAT_COMPRESSED_DXT1_RGB:
case PIXELFORMAT_COMPRESSED_DXT1_RGBA:
case PIXELFORMAT_COMPRESSED_ETC1_RGB:
case PIXELFORMAT_COMPRESSED_ETC2_RGB:
case PIXELFORMAT_COMPRESSED_PVRT_RGB:
case PIXELFORMAT_COMPRESSED_PVRT_RGBA: bpp = 4; break;
case PIXELFORMAT_COMPRESSED_DXT3_RGBA:
case PIXELFORMAT_COMPRESSED_DXT5_RGBA:
case PIXELFORMAT_COMPRESSED_ETC2_EAC_RGBA:
case PIXELFORMAT_COMPRESSED_ASTC_4x4_RGBA: bpp = 8; break;
case PIXELFORMAT_COMPRESSED_ASTC_8x8_RGBA: bpp = 2; break;
default: break;
}
dataSize = width*height*bpp/8; // Total data size in bytes
// Most compressed formats works on 4x4 blocks,
// if texture is smaller, minimum dataSize is 8 or 16
if ((width < 4) && (height < 4))
{
if ((format >= PIXELFORMAT_COMPRESSED_DXT1_RGB) && (format < PIXELFORMAT_COMPRESSED_DXT3_RGBA)) dataSize = 8;
else if ((format >= PIXELFORMAT_COMPRESSED_DXT3_RGBA) && (format < PIXELFORMAT_COMPRESSED_ASTC_8x8_RGBA)) dataSize = 16;
}
return dataSize;
}
//----------------------------------------------------------------------------------
// Module specific Functions Definition
//----------------------------------------------------------------------------------
#if defined(SUPPORT_FILEFORMAT_DDS)
// Loading DDS image data (compressed or uncompressed)
static Image LoadDDS(const unsigned char *fileData, unsigned int fileSize)
{
unsigned char *fileDataPtr = (unsigned char *)fileData;
// Required extension:
// GL_EXT_texture_compression_s3tc
// Supported tokens (defined by extensions)
// GL_COMPRESSED_RGB_S3TC_DXT1_EXT 0x83F0
// GL_COMPRESSED_RGBA_S3TC_DXT1_EXT 0x83F1
// GL_COMPRESSED_RGBA_S3TC_DXT3_EXT 0x83F2
// GL_COMPRESSED_RGBA_S3TC_DXT5_EXT 0x83F3
#define FOURCC_DXT1 0x31545844 // Equivalent to "DXT1" in ASCII
#define FOURCC_DXT3 0x33545844 // Equivalent to "DXT3" in ASCII
#define FOURCC_DXT5 0x35545844 // Equivalent to "DXT5" in ASCII
// DDS Pixel Format
typedef struct {
unsigned int size;
unsigned int flags;
unsigned int fourCC;
unsigned int rgbBitCount;
unsigned int rBitMask;
unsigned int gBitMask;
unsigned int bBitMask;
unsigned int aBitMask;
} DDSPixelFormat;
// DDS Header (124 bytes)
typedef struct {
unsigned int size;
unsigned int flags;
unsigned int height;
unsigned int width;
unsigned int pitchOrLinearSize;
unsigned int depth;
unsigned int mipmapCount;
unsigned int reserved1[11];
DDSPixelFormat ddspf;
unsigned int caps;
unsigned int caps2;
unsigned int caps3;
unsigned int caps4;
unsigned int reserved2;
} DDSHeader;
Image image = { 0 };
if (fileDataPtr != NULL)
{
// Verify the type of file
unsigned char *ddsHeaderId = fileDataPtr;
fileDataPtr += 4;
if ((ddsHeaderId[0] != 'D') || (ddsHeaderId[1] != 'D') || (ddsHeaderId[2] != 'S') || (ddsHeaderId[3] != ' '))
{
TRACELOG(LOG_WARNING, "IMAGE: DDS file data not valid");
}
else
{
DDSHeader *ddsHeader = (DDSHeader *)fileDataPtr;
TRACELOGD("IMAGE: DDS file data info:");
TRACELOGD(" > Header size: %i", sizeof(DDSHeader));
TRACELOGD(" > Pixel format size: %i", ddsHeader->ddspf.size);
TRACELOGD(" > Pixel format flags: 0x%x", ddsHeader->ddspf.flags);
TRACELOGD(" > File format: 0x%x", ddsHeader->ddspf.fourCC);
TRACELOGD(" > File bit count: 0x%x", ddsHeader->ddspf.rgbBitCount);
fileDataPtr += sizeof(DDSHeader); // Skip header
image.width = ddsHeader->width;
image.height = ddsHeader->height;
if (ddsHeader->mipmapCount == 0) image.mipmaps = 1; // Parameter not used
else image.mipmaps = ddsHeader->mipmapCount;
if (ddsHeader->ddspf.rgbBitCount == 16) // 16bit mode, no compressed
{
if (ddsHeader->ddspf.flags == 0x40) // no alpha channel
{
int dataSize = image.width*image.height*sizeof(unsigned short);
image.data = (unsigned short *)RL_MALLOC(dataSize);
memcpy(image.data, fileDataPtr, dataSize);
image.format = PIXELFORMAT_UNCOMPRESSED_R5G6B5;
}
else if (ddsHeader->ddspf.flags == 0x41) // with alpha channel
{
if (ddsHeader->ddspf.aBitMask == 0x8000) // 1bit alpha
{
int dataSize = image.width*image.height*sizeof(unsigned short);
image.data = (unsigned short *)RL_MALLOC(dataSize);
memcpy(image.data, fileDataPtr, dataSize);
unsigned char alpha = 0;
// NOTE: Data comes as A1R5G5B5, it must be reordered to R5G5B5A1
for (int i = 0; i < image.width*image.height; i++)
{
alpha = ((unsigned short *)image.data)[i] >> 15;
((unsigned short *)image.data)[i] = ((unsigned short *)image.data)[i] << 1;
((unsigned short *)image.data)[i] += alpha;
}
image.format = PIXELFORMAT_UNCOMPRESSED_R5G5B5A1;
}
else if (ddsHeader->ddspf.aBitMask == 0xf000) // 4bit alpha
{
int dataSize = image.width*image.height*sizeof(unsigned short);
image.data = (unsigned short *)RL_MALLOC(dataSize);
memcpy(image.data, fileDataPtr, dataSize);
unsigned char alpha = 0;
// NOTE: Data comes as A4R4G4B4, it must be reordered R4G4B4A4
for (int i = 0; i < image.width*image.height; i++)
{
alpha = ((unsigned short *)image.data)[i] >> 12;
((unsigned short *)image.data)[i] = ((unsigned short *)image.data)[i] << 4;
((unsigned short *)image.data)[i] += alpha;
}
image.format = PIXELFORMAT_UNCOMPRESSED_R4G4B4A4;
}
}
}
else if (ddsHeader->ddspf.flags == 0x40 && ddsHeader->ddspf.rgbBitCount == 24) // DDS_RGB, no compressed
{
int dataSize = image.width*image.height*3*sizeof(unsigned char);
image.data = (unsigned short *)RL_MALLOC(dataSize);
memcpy(image.data, fileDataPtr, dataSize);
image.format = PIXELFORMAT_UNCOMPRESSED_R8G8B8;
}
else if (ddsHeader->ddspf.flags == 0x41 && ddsHeader->ddspf.rgbBitCount == 32) // DDS_RGBA, no compressed
{
int dataSize = image.width*image.height*4*sizeof(unsigned char);
image.data = (unsigned short *)RL_MALLOC(dataSize);
memcpy(image.data, fileDataPtr, dataSize);
unsigned char blue = 0;
// NOTE: Data comes as A8R8G8B8, it must be reordered R8G8B8A8 (view next comment)
// DirecX understand ARGB as a 32bit DWORD but the actual memory byte alignment is BGRA
// So, we must realign B8G8R8A8 to R8G8B8A8
for (int i = 0; i < image.width*image.height*4; i += 4)
{
blue = ((unsigned char *)image.data)[i];
((unsigned char *)image.data)[i] = ((unsigned char *)image.data)[i + 2];
((unsigned char *)image.data)[i + 2] = blue;
}
image.format = PIXELFORMAT_UNCOMPRESSED_R8G8B8A8;
}
else if (((ddsHeader->ddspf.flags == 0x04) || (ddsHeader->ddspf.flags == 0x05)) && (ddsHeader->ddspf.fourCC > 0)) // Compressed
{
int dataSize = 0;
// Calculate data size, including all mipmaps
if (ddsHeader->mipmapCount > 1) dataSize = ddsHeader->pitchOrLinearSize*2;
else dataSize = ddsHeader->pitchOrLinearSize;
image.data = (unsigned char *)RL_MALLOC(dataSize*sizeof(unsigned char));
memcpy(image.data, fileDataPtr, dataSize);
switch (ddsHeader->ddspf.fourCC)
{
case FOURCC_DXT1:
{
if (ddsHeader->ddspf.flags == 0x04) image.format = PIXELFORMAT_COMPRESSED_DXT1_RGB;
else image.format = PIXELFORMAT_COMPRESSED_DXT1_RGBA;
} break;
case FOURCC_DXT3: image.format = PIXELFORMAT_COMPRESSED_DXT3_RGBA; break;
case FOURCC_DXT5: image.format = PIXELFORMAT_COMPRESSED_DXT5_RGBA; break;
default: break;
}
}
}
}
return image;
}
#endif
#if defined(SUPPORT_FILEFORMAT_PKM)
// Loading PKM image data (ETC1/ETC2 compression)
// NOTE: KTX is the standard Khronos Group compression format (ETC1/ETC2, mipmaps)
// PKM is a much simpler file format used mainly to contain a single ETC1/ETC2 compressed image (no mipmaps)
static Image LoadPKM(const unsigned char *fileData, unsigned int fileSize)
{
unsigned char *fileDataPtr = (unsigned char *)fileData;
// Required extensions:
// GL_OES_compressed_ETC1_RGB8_texture (ETC1) (OpenGL ES 2.0)
// GL_ARB_ES3_compatibility (ETC2/EAC) (OpenGL ES 3.0)
// Supported tokens (defined by extensions)
// GL_ETC1_RGB8_OES 0x8D64
// GL_COMPRESSED_RGB8_ETC2 0x9274
// GL_COMPRESSED_RGBA8_ETC2_EAC 0x9278
// PKM file (ETC1) Header (16 bytes)
typedef struct {
char id[4]; // "PKM "
char version[2]; // "10" or "20"
unsigned short format; // Data format (big-endian) (Check list below)
unsigned short width; // Texture width (big-endian) (origWidth rounded to multiple of 4)
unsigned short height; // Texture height (big-endian) (origHeight rounded to multiple of 4)
unsigned short origWidth; // Original width (big-endian)
unsigned short origHeight; // Original height (big-endian)
} PKMHeader;
// Formats list
// version 10: format: 0=ETC1_RGB, [1=ETC1_RGBA, 2=ETC1_RGB_MIP, 3=ETC1_RGBA_MIP] (not used)
// version 20: format: 0=ETC1_RGB, 1=ETC2_RGB, 2=ETC2_RGBA_OLD, 3=ETC2_RGBA, 4=ETC2_RGBA1, 5=ETC2_R, 6=ETC2_RG, 7=ETC2_SIGNED_R, 8=ETC2_SIGNED_R
// NOTE: The extended width and height are the widths rounded up to a multiple of 4.
// NOTE: ETC is always 4bit per pixel (64 bit for each 4x4 block of pixels)
Image image = { 0 };
if (fileDataPtr != NULL)
{
PKMHeader *pkmHeader = (PKMHeader *)fileDataPtr;
if ((pkmHeader->id[0] != 'P') || (pkmHeader->id[1] != 'K') || (pkmHeader->id[2] != 'M') || (pkmHeader->id[3] != ' '))
{
TRACELOG(LOG_WARNING, "IMAGE: PKM file data not valid");
}
else
{
fileDataPtr += sizeof(PKMHeader); // Skip header
// NOTE: format, width and height come as big-endian, data must be swapped to little-endian
pkmHeader->format = ((pkmHeader->format & 0x00FF) << 8) | ((pkmHeader->format & 0xFF00) >> 8);
pkmHeader->width = ((pkmHeader->width & 0x00FF) << 8) | ((pkmHeader->width & 0xFF00) >> 8);
pkmHeader->height = ((pkmHeader->height & 0x00FF) << 8) | ((pkmHeader->height & 0xFF00) >> 8);
TRACELOGD("IMAGE: PKM file data info:");
TRACELOGD(" > Image width: %i", pkmHeader->width);
TRACELOGD(" > Image height: %i", pkmHeader->height);
TRACELOGD(" > Image format: %i", pkmHeader->format);
image.width = pkmHeader->width;
image.height = pkmHeader->height;
image.mipmaps = 1;
int bpp = 4;
if (pkmHeader->format == 3) bpp = 8;
int dataSize = image.width*image.height*bpp/8; // Total data size in bytes
image.data = (unsigned char *)RL_MALLOC(dataSize*sizeof(unsigned char));
memcpy(image.data, fileDataPtr, dataSize);
if (pkmHeader->format == 0) image.format = PIXELFORMAT_COMPRESSED_ETC1_RGB;
else if (pkmHeader->format == 1) image.format = PIXELFORMAT_COMPRESSED_ETC2_RGB;
else if (pkmHeader->format == 3) image.format = PIXELFORMAT_COMPRESSED_ETC2_EAC_RGBA;
}
}
return image;
}
#endif
#if defined(SUPPORT_FILEFORMAT_KTX)
// Load KTX compressed image data (ETC1/ETC2 compression)
// TODO: Review KTX loading, many things changed!
static Image LoadKTX(const unsigned char *fileData, unsigned int fileSize)
{
unsigned char *fileDataPtr = (unsigned char *)fileData;
// Required extensions:
// GL_OES_compressed_ETC1_RGB8_texture (ETC1)
// GL_ARB_ES3_compatibility (ETC2/EAC)
// Supported tokens (defined by extensions)
// GL_ETC1_RGB8_OES 0x8D64
// GL_COMPRESSED_RGB8_ETC2 0x9274
// GL_COMPRESSED_RGBA8_ETC2_EAC 0x9278
// KTX file Header (64 bytes)
// v1.1 - https://www.khronos.org/opengles/sdk/tools/KTX/file_format_spec/
// v2.0 - http://github.khronos.org/KTX-Specification/
// TODO: Support KTX 2.2 specs!
typedef struct {
char id[12]; // Identifier: "«KTX 11»\r\n\x1A\n"
unsigned int endianness; // Little endian: 0x01 0x02 0x03 0x04
unsigned int glType; // For compressed textures, glType must equal 0
unsigned int glTypeSize; // For compressed texture data, usually 1
unsigned int glFormat; // For compressed textures is 0
unsigned int glInternalFormat; // Compressed internal format
unsigned int glBaseInternalFormat; // Same as glFormat (RGB, RGBA, ALPHA...)
unsigned int width; // Texture image width in pixels
unsigned int height; // Texture image height in pixels
unsigned int depth; // For 2D textures is 0
unsigned int elements; // Number of array elements, usually 0
unsigned int faces; // Cubemap faces, for no-cubemap = 1
unsigned int mipmapLevels; // Non-mipmapped textures = 1
unsigned int keyValueDataSize; // Used to encode any arbitrary data...
} KTXHeader;
// NOTE: Before start of every mipmap data block, we have: unsigned int dataSize
Image image = { 0 };
if (fileDataPtr != NULL)
{
KTXHeader *ktxHeader = (KTXHeader *)fileDataPtr;
if ((ktxHeader->id[1] != 'K') || (ktxHeader->id[2] != 'T') || (ktxHeader->id[3] != 'X') ||
(ktxHeader->id[4] != ' ') || (ktxHeader->id[5] != '1') || (ktxHeader->id[6] != '1'))
{
TRACELOG(LOG_WARNING, "IMAGE: KTX file data not valid");
}
else
{
fileDataPtr += sizeof(KTXHeader); // Move file data pointer
image.width = ktxHeader->width;
image.height = ktxHeader->height;
image.mipmaps = ktxHeader->mipmapLevels;
TRACELOGD("IMAGE: KTX file data info:");
TRACELOGD(" > Image width: %i", ktxHeader->width);
TRACELOGD(" > Image height: %i", ktxHeader->height);
TRACELOGD(" > Image format: 0x%x", ktxHeader->glInternalFormat);
fileDataPtr += ktxHeader->keyValueDataSize; // Skip value data size
int dataSize = ((int *)fileDataPtr)[0];
fileDataPtr += sizeof(int);
image.data = (unsigned char *)RL_MALLOC(dataSize*sizeof(unsigned char));
memcpy(image.data, fileDataPtr, dataSize);
if (ktxHeader->glInternalFormat == 0x8D64) image.format = PIXELFORMAT_COMPRESSED_ETC1_RGB;
else if (ktxHeader->glInternalFormat == 0x9274) image.format = PIXELFORMAT_COMPRESSED_ETC2_RGB;
else if (ktxHeader->glInternalFormat == 0x9278) image.format = PIXELFORMAT_COMPRESSED_ETC2_EAC_RGBA;
// TODO: Support uncompressed data formats? Right now it returns format = 0!
}
}
return image;
}
// Save image data as KTX file
// NOTE: By default KTX 1.1 spec is used, 2.0 is still on draft (01Oct2018)
// TODO: Review KTX saving, many things changed!
static int SaveKTX(Image image, const char *fileName)
{
// KTX file Header (64 bytes)
// v1.1 - https://www.khronos.org/opengles/sdk/tools/KTX/file_format_spec/
// v2.0 - http://github.khronos.org/KTX-Specification/ - Final specs by 2021-04-18
typedef struct {
char id[12]; // Identifier: "«KTX 11»\r\n\x1A\n" // KTX 2.0: "«KTX 22»\r\n\x1A\n"
unsigned int endianness; // Little endian: 0x01 0x02 0x03 0x04
unsigned int glType; // For compressed textures, glType must equal 0
unsigned int glTypeSize; // For compressed texture data, usually 1
unsigned int glFormat; // For compressed textures is 0
unsigned int glInternalFormat; // Compressed internal format
unsigned int glBaseInternalFormat; // Same as glFormat (RGB, RGBA, ALPHA...) // KTX 2.0: UInt32 vkFormat
unsigned int width; // Texture image width in pixels
unsigned int height; // Texture image height in pixels
unsigned int depth; // For 2D textures is 0
unsigned int elements; // Number of array elements, usually 0
unsigned int faces; // Cubemap faces, for no-cubemap = 1
unsigned int mipmapLevels; // Non-mipmapped textures = 1
unsigned int keyValueDataSize; // Used to encode any arbitrary data... // KTX 2.0: UInt32 levelOrder - ordering of the mipmap levels, usually 0
// KTX 2.0: UInt32 supercompressionScheme - 0 (None), 1 (Crunch CRN), 2 (Zlib DEFLATE)...
// KTX 2.0 defines additional header elements...
} KTXHeader;
// Calculate file dataSize required
int dataSize = sizeof(KTXHeader);
for (int i = 0, width = image.width, height = image.height; i < image.mipmaps; i++)
{
dataSize += GetPixelDataSize(width, height, image.format);
width /= 2; height /= 2;
}
unsigned char *fileData = RL_CALLOC(dataSize, 1);
unsigned char *fileDataPtr = fileData;
KTXHeader ktxHeader = { 0 };
// KTX identifier (v1.1)
//unsigned char id[12] = { '«', 'K', 'T', 'X', ' ', '1', '1', '»', '\r', '\n', '\x1A', '\n' };
//unsigned char id[12] = { 0xAB, 0x4B, 0x54, 0x58, 0x20, 0x31, 0x31, 0xBB, 0x0D, 0x0A, 0x1A, 0x0A };
const char ktxIdentifier[12] = { 0xAB, 'K', 'T', 'X', ' ', '1', '1', 0xBB, '\r', '\n', 0x1A, '\n' };
// Get the image header
memcpy(ktxHeader.id, ktxIdentifier, 12); // KTX 1.1 signature
ktxHeader.endianness = 0;
ktxHeader.glType = 0; // Obtained from image.format
ktxHeader.glTypeSize = 1;
ktxHeader.glFormat = 0; // Obtained from image.format
ktxHeader.glInternalFormat = 0; // Obtained from image.format
ktxHeader.glBaseInternalFormat = 0;
ktxHeader.width = image.width;
ktxHeader.height = image.height;
ktxHeader.depth = 0;
ktxHeader.elements = 0;
ktxHeader.faces = 1;
ktxHeader.mipmapLevels = image.mipmaps; // If it was 0, it means mipmaps should be generated on loading (not for compressed formats)
ktxHeader.keyValueDataSize = 0; // No extra data after the header
rlGetGlTextureFormats(image.format, &ktxHeader.glInternalFormat, &ktxHeader.glFormat, &ktxHeader.glType); // rlgl module function
ktxHeader.glBaseInternalFormat = ktxHeader.glFormat; // KTX 1.1 only
// NOTE: We can save into a .ktx all PixelFormats supported by raylib, including compressed formats like DXT, ETC or ASTC
if (ktxHeader.glFormat == -1) TRACELOG(LOG_WARNING, "IMAGE: GL format not supported for KTX export (%i)", ktxHeader.glFormat);
else
{
memcpy(fileDataPtr, &ktxHeader, sizeof(KTXHeader));
fileDataPtr += sizeof(KTXHeader);
int width = image.width;
int height = image.height;
int dataOffset = 0;
// Save all mipmaps data
for (int i = 0; i < image.mipmaps; i++)
{
unsigned int dataSize = GetPixelDataSize(width, height, image.format);
memcpy(fileDataPtr, &dataSize, sizeof(unsigned int));
memcpy(fileDataPtr + 4, (unsigned char *)image.data + dataOffset, dataSize);
width /= 2;
height /= 2;
dataOffset += dataSize;
fileDataPtr += (4 + dataSize);
}
}
int success = SaveFileData(fileName, fileData, dataSize);
RL_FREE(fileData); // Free file data buffer
// If all data has been written correctly to file, success = 1
return success;
}
#endif
#if defined(SUPPORT_FILEFORMAT_PVR)
// Loading PVR image data (uncompressed or PVRT compression)
// NOTE: PVR v2 not supported, use PVR v3 instead
static Image LoadPVR(const unsigned char *fileData, unsigned int fileSize)
{
unsigned char *fileDataPtr = (unsigned char *)fileData;
// Required extension:
// GL_IMG_texture_compression_pvrtc
// Supported tokens (defined by extensions)
// GL_COMPRESSED_RGB_PVRTC_4BPPV1_IMG 0x8C00
// GL_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG 0x8C02
#if 0 // Not used...
// PVR file v2 Header (52 bytes)
typedef struct {
unsigned int headerLength;
unsigned int height;
unsigned int width;
unsigned int numMipmaps;
unsigned int flags;
unsigned int dataLength;
unsigned int bpp;
unsigned int bitmaskRed;
unsigned int bitmaskGreen;
unsigned int bitmaskBlue;
unsigned int bitmaskAlpha;
unsigned int pvrTag;
unsigned int numSurfs;
} PVRHeaderV2;
#endif
// PVR file v3 Header (52 bytes)
// NOTE: After it could be metadata (15 bytes?)
typedef struct {
char id[4];
unsigned int flags;
unsigned char channels[4]; // pixelFormat high part
unsigned char channelDepth[4]; // pixelFormat low part
unsigned int colourSpace;
unsigned int channelType;
unsigned int height;
unsigned int width;
unsigned int depth;
unsigned int numSurfaces;
unsigned int numFaces;
unsigned int numMipmaps;
unsigned int metaDataSize;
} PVRHeaderV3;
#if 0 // Not used...
// Metadata (usually 15 bytes)
typedef struct {
unsigned int devFOURCC;
unsigned int key;
unsigned int dataSize; // Not used?
unsigned char *data; // Not used?
} PVRMetadata;
#endif
Image image = { 0 };
if (fileDataPtr != NULL)
{
// Check PVR image version
unsigned char pvrVersion = fileDataPtr[0];
// Load different PVR data formats
if (pvrVersion == 0x50)
{
PVRHeaderV3 *pvrHeader = (PVRHeaderV3 *)fileDataPtr;
if ((pvrHeader->id[0] != 'P') || (pvrHeader->id[1] != 'V') || (pvrHeader->id[2] != 'R') || (pvrHeader->id[3] != 3))
{
TRACELOG(LOG_WARNING, "IMAGE: PVR file data not valid");
}
else
{
fileDataPtr += sizeof(PVRHeaderV3); // Skip header
image.width = pvrHeader->width;
image.height = pvrHeader->height;
image.mipmaps = pvrHeader->numMipmaps;
// Check data format
if (((pvrHeader->channels[0] == 'l') && (pvrHeader->channels[1] == 0)) && (pvrHeader->channelDepth[0] == 8)) image.format = PIXELFORMAT_UNCOMPRESSED_GRAYSCALE;
else if (((pvrHeader->channels[0] == 'l') && (pvrHeader->channels[1] == 'a')) && ((pvrHeader->channelDepth[0] == 8) && (pvrHeader->channelDepth[1] == 8))) image.format = PIXELFORMAT_UNCOMPRESSED_GRAY_ALPHA;
else if ((pvrHeader->channels[0] == 'r') && (pvrHeader->channels[1] == 'g') && (pvrHeader->channels[2] == 'b'))
{
if (pvrHeader->channels[3] == 'a')
{
if ((pvrHeader->channelDepth[0] == 5) && (pvrHeader->channelDepth[1] == 5) && (pvrHeader->channelDepth[2] == 5) && (pvrHeader->channelDepth[3] == 1)) image.format = PIXELFORMAT_UNCOMPRESSED_R5G5B5A1;
else if ((pvrHeader->channelDepth[0] == 4) && (pvrHeader->channelDepth[1] == 4) && (pvrHeader->channelDepth[2] == 4) && (pvrHeader->channelDepth[3] == 4)) image.format = PIXELFORMAT_UNCOMPRESSED_R4G4B4A4;
else if ((pvrHeader->channelDepth[0] == 8) && (pvrHeader->channelDepth[1] == 8) && (pvrHeader->channelDepth[2] == 8) && (pvrHeader->channelDepth[3] == 8)) image.format = PIXELFORMAT_UNCOMPRESSED_R8G8B8A8;
}
else if (pvrHeader->channels[3] == 0)
{
if ((pvrHeader->channelDepth[0] == 5) && (pvrHeader->channelDepth[1] == 6) && (pvrHeader->channelDepth[2] == 5)) image.format = PIXELFORMAT_UNCOMPRESSED_R5G6B5;
else if ((pvrHeader->channelDepth[0] == 8) && (pvrHeader->channelDepth[1] == 8) && (pvrHeader->channelDepth[2] == 8)) image.format = PIXELFORMAT_UNCOMPRESSED_R8G8B8;
}
}
else if (pvrHeader->channels[0] == 2) image.format = PIXELFORMAT_COMPRESSED_PVRT_RGB;
else if (pvrHeader->channels[0] == 3) image.format = PIXELFORMAT_COMPRESSED_PVRT_RGBA;
fileDataPtr += pvrHeader->metaDataSize; // Skip meta data header
// Calculate data size (depends on format)
int bpp = 0;
switch (image.format)
{
case PIXELFORMAT_UNCOMPRESSED_GRAYSCALE: bpp = 8; break;
case PIXELFORMAT_UNCOMPRESSED_GRAY_ALPHA:
case PIXELFORMAT_UNCOMPRESSED_R5G5B5A1:
case PIXELFORMAT_UNCOMPRESSED_R5G6B5:
case PIXELFORMAT_UNCOMPRESSED_R4G4B4A4: bpp = 16; break;
case PIXELFORMAT_UNCOMPRESSED_R8G8B8A8: bpp = 32; break;
case PIXELFORMAT_UNCOMPRESSED_R8G8B8: bpp = 24; break;
case PIXELFORMAT_COMPRESSED_PVRT_RGB:
case PIXELFORMAT_COMPRESSED_PVRT_RGBA: bpp = 4; break;
default: break;
}
int dataSize = image.width*image.height*bpp/8; // Total data size in bytes
image.data = (unsigned char *)RL_MALLOC(dataSize*sizeof(unsigned char));
memcpy(image.data, fileDataPtr, dataSize);
}
}
else if (pvrVersion == 52) TRACELOG(LOG_INFO, "IMAGE: PVRv2 format not supported, update your files to PVRv3");
}
return image;
}
#endif
#if defined(SUPPORT_FILEFORMAT_ASTC)
// Load ASTC compressed image data (ASTC compression)
static Image LoadASTC(const unsigned char *fileData, unsigned int fileSize)
{
unsigned char *fileDataPtr = (unsigned char *)fileData;
// Required extensions:
// GL_KHR_texture_compression_astc_hdr
// GL_KHR_texture_compression_astc_ldr
// Supported tokens (defined by extensions)
// GL_COMPRESSED_RGBA_ASTC_4x4_KHR 0x93b0
// GL_COMPRESSED_RGBA_ASTC_8x8_KHR 0x93b7
// ASTC file Header (16 bytes)
typedef struct {
unsigned char id[4]; // Signature: 0x13 0xAB 0xA1 0x5C
unsigned char blockX; // Block X dimensions
unsigned char blockY; // Block Y dimensions
unsigned char blockZ; // Block Z dimensions (1 for 2D images)
unsigned char width[3]; // Image width in pixels (24bit value)
unsigned char height[3]; // Image height in pixels (24bit value)
unsigned char length[3]; // Image Z-size (1 for 2D images)
} ASTCHeader;
Image image = { 0 };
if (fileDataPtr != NULL)
{
ASTCHeader *astcHeader = (ASTCHeader *)fileDataPtr;
if ((astcHeader->id[3] != 0x5c) || (astcHeader->id[2] != 0xa1) || (astcHeader->id[1] != 0xab) || (astcHeader->id[0] != 0x13))
{
TRACELOG(LOG_WARNING, "IMAGE: ASTC file data not valid");
}
else
{
fileDataPtr += sizeof(ASTCHeader); // Skip header
// NOTE: Assuming Little Endian (could it be wrong?)
image.width = 0x00000000 | ((int)astcHeader->width[2] << 16) | ((int)astcHeader->width[1] << 8) | ((int)astcHeader->width[0]);
image.height = 0x00000000 | ((int)astcHeader->height[2] << 16) | ((int)astcHeader->height[1] << 8) | ((int)astcHeader->height[0]);
TRACELOGD("IMAGE: ASTC file data info:");
TRACELOGD(" > Image width: %i", image.width);
TRACELOGD(" > Image height: %i", image.height);
TRACELOGD(" > Image blocks: %ix%i", astcHeader->blockX, astcHeader->blockY);
image.mipmaps = 1; // NOTE: ASTC format only contains one mipmap level
// NOTE: Each block is always stored in 128bit so we can calculate the bpp
int bpp = 128/(astcHeader->blockX*astcHeader->blockY);
// NOTE: Currently we only support 2 blocks configurations: 4x4 and 8x8
if ((bpp == 8) || (bpp == 2))
{
int dataSize = image.width*image.height*bpp/8; // Data size in bytes
image.data = (unsigned char *)RL_MALLOC(dataSize*sizeof(unsigned char));
memcpy(image.data, fileDataPtr, dataSize);
if (bpp == 8) image.format = PIXELFORMAT_COMPRESSED_ASTC_4x4_RGBA;
else if (bpp == 2) image.format = PIXELFORMAT_COMPRESSED_ASTC_8x8_RGBA;
}
else TRACELOG(LOG_WARNING, "IMAGE: ASTC block size configuration not supported");
}
}
return image;
}
#endif
// Get pixel data from image as Vector4 array (float normalized)
static Vector4 *LoadImageDataNormalized(Image image)
{
Vector4 *pixels = (Vector4 *)RL_MALLOC(image.width*image.height*sizeof(Vector4));
if (image.format >= PIXELFORMAT_COMPRESSED_DXT1_RGB) TRACELOG(LOG_WARNING, "IMAGE: Pixel data retrieval not supported for compressed image formats");
else
{
for (int i = 0, k = 0; i < image.width*image.height; i++)
{
switch (image.format)
{
case PIXELFORMAT_UNCOMPRESSED_GRAYSCALE:
{
pixels[i].x = (float)((unsigned char *)image.data)[i]/255.0f;
pixels[i].y = (float)((unsigned char *)image.data)[i]/255.0f;
pixels[i].z = (float)((unsigned char *)image.data)[i]/255.0f;
pixels[i].w = 1.0f;
} break;
case PIXELFORMAT_UNCOMPRESSED_GRAY_ALPHA:
{
pixels[i].x = (float)((unsigned char *)image.data)[k]/255.0f;
pixels[i].y = (float)((unsigned char *)image.data)[k]/255.0f;
pixels[i].z = (float)((unsigned char *)image.data)[k]/255.0f;
pixels[i].w = (float)((unsigned char *)image.data)[k + 1]/255.0f;
k += 2;
} break;
case PIXELFORMAT_UNCOMPRESSED_R5G5B5A1:
{
unsigned short pixel = ((unsigned short *)image.data)[i];
pixels[i].x = (float)((pixel & 0b1111100000000000) >> 11)*(1.0f/31);
pixels[i].y = (float)((pixel & 0b0000011111000000) >> 6)*(1.0f/31);
pixels[i].z = (float)((pixel & 0b0000000000111110) >> 1)*(1.0f/31);
pixels[i].w = ((pixel & 0b0000000000000001) == 0)? 0.0f : 1.0f;
} break;
case PIXELFORMAT_UNCOMPRESSED_R5G6B5:
{
unsigned short pixel = ((unsigned short *)image.data)[i];
pixels[i].x = (float)((pixel & 0b1111100000000000) >> 11)*(1.0f/31);
pixels[i].y = (float)((pixel & 0b0000011111100000) >> 5)*(1.0f/63);
pixels[i].z = (float)(pixel & 0b0000000000011111)*(1.0f/31);
pixels[i].w = 1.0f;
} break;
case PIXELFORMAT_UNCOMPRESSED_R4G4B4A4:
{
unsigned short pixel = ((unsigned short *)image.data)[i];
pixels[i].x = (float)((pixel & 0b1111000000000000) >> 12)*(1.0f/15);
pixels[i].y = (float)((pixel & 0b0000111100000000) >> 8)*(1.0f/15);
pixels[i].z = (float)((pixel & 0b0000000011110000) >> 4)*(1.0f/15);
pixels[i].w = (float)(pixel & 0b0000000000001111)*(1.0f/15);
} break;
case PIXELFORMAT_UNCOMPRESSED_R8G8B8A8:
{
pixels[i].x = (float)((unsigned char *)image.data)[k]/255.0f;
pixels[i].y = (float)((unsigned char *)image.data)[k + 1]/255.0f;
pixels[i].z = (float)((unsigned char *)image.data)[k + 2]/255.0f;
pixels[i].w = (float)((unsigned char *)image.data)[k + 3]/255.0f;
k += 4;
} break;
case PIXELFORMAT_UNCOMPRESSED_R8G8B8:
{
pixels[i].x = (float)((unsigned char *)image.data)[k]/255.0f;
pixels[i].y = (float)((unsigned char *)image.data)[k + 1]/255.0f;
pixels[i].z = (float)((unsigned char *)image.data)[k + 2]/255.0f;
pixels[i].w = 1.0f;
k += 3;
} break;
case PIXELFORMAT_UNCOMPRESSED_R32:
{
pixels[i].x = ((float *)image.data)[k];
pixels[i].y = 0.0f;
pixels[i].z = 0.0f;
pixels[i].w = 1.0f;
} break;
case PIXELFORMAT_UNCOMPRESSED_R32G32B32:
{
pixels[i].x = ((float *)image.data)[k];
pixels[i].y = ((float *)image.data)[k + 1];
pixels[i].z = ((float *)image.data)[k + 2];
pixels[i].w = 1.0f;
k += 3;
} break;
case PIXELFORMAT_UNCOMPRESSED_R32G32B32A32:
{
pixels[i].x = ((float *)image.data)[k];
pixels[i].y = ((float *)image.data)[k + 1];
pixels[i].z = ((float *)image.data)[k + 2];
pixels[i].w = ((float *)image.data)[k + 3];
k += 4;
}
default: break;
}
}
}
return pixels;
}
#endif // SUPPORT_MODULE_RTEXTURES