Shipwright/OTRGui/libs/raylib/src/external/jar_mod.h

1596 lines
51 KiB
C

// jar_mod.h - v0.01 - public domain C0 - Joshua Reisenauer
//
// HISTORY:
//
// v0.01 2016-03-12 Setup
//
//
// USAGE:
//
// In ONE source file, put:
//
// #define JAR_MOD_IMPLEMENTATION
// #include "jar_mod.h"
//
// Other source files should just include jar_mod.h
//
// SAMPLE CODE:
// jar_mod_context_t modctx;
// short samplebuff[4096];
// bool bufferFull = false;
// int intro_load(void)
// {
// jar_mod_init(&modctx);
// jar_mod_load_file(&modctx, "file.mod");
// return 1;
// }
// int intro_unload(void)
// {
// jar_mod_unload(&modctx);
// return 1;
// }
// int intro_tick(long counter)
// {
// if(!bufferFull)
// {
// jar_mod_fillbuffer(&modctx, samplebuff, 4096, 0);
// bufferFull=true;
// }
// if(IsKeyDown(KEY_ENTER))
// return 1;
// return 0;
// }
//
//
// LISCENSE:
//
// Written by: Jean-François DEL NERO (http://hxc2001.com/) <Email : jeanfrancoisdelnero <> free.fr>
// Adapted to jar_mod by: Joshua Adam Reisenauer <kd7tck@gmail.com>
// This program is free software. It comes without any warranty, to the
// extent permitted by applicable law. You can redistribute it and/or
// modify it under the terms of the Do What The Fuck You Want To Public
// License, Version 2, as published by Sam Hocevar. See
// http://sam.zoy.org/wtfpl/COPYING for more details.
///////////////////////////////////////////////////////////////////////////////////
// HxCMOD Core API:
// -------------------------------------------
// int jar_mod_init(jar_mod_context_t * modctx)
//
// - Initialize the jar_mod_context_t buffer. Must be called before doing anything else.
// Return 1 if success. 0 in case of error.
// -------------------------------------------
// mulong jar_mod_load_file(jar_mod_context_t * modctx, const char* filename)
//
// - "Load" a MOD from file, context must already be initialized.
// Return size of file in bytes.
// -------------------------------------------
// void jar_mod_fillbuffer( jar_mod_context_t * modctx, short * outbuffer, unsigned long nbsample, jar_mod_tracker_buffer_state * trkbuf )
//
// - Generate and return the next samples chunk to outbuffer.
// nbsample specify the number of stereo 16bits samples you want.
// The output format is by default signed 48000Hz 16-bit Stereo PCM samples, otherwise it is changed with jar_mod_setcfg().
// The output buffer size in bytes must be equal to ( nbsample * 2 * channels ).
// The optional trkbuf parameter can be used to get detailed status of the player. Put NULL/0 is unused.
// -------------------------------------------
// void jar_mod_unload( jar_mod_context_t * modctx )
// - "Unload" / clear the player status.
// -------------------------------------------
///////////////////////////////////////////////////////////////////////////////////
#ifndef INCLUDE_JAR_MOD_H
#define INCLUDE_JAR_MOD_H
// Allow custom memory allocators
#ifndef JARMOD_MALLOC
#define JARMOD_MALLOC(sz) malloc(sz)
#endif
#ifndef JARMOD_FREE
#define JARMOD_FREE(p) free(p)
#endif
// Basic type
typedef unsigned char muchar;
typedef unsigned short muint;
typedef short mint;
typedef unsigned long mulong;
#define NUMMAXCHANNELS 32
#define MAXNOTES 12*12
#define DEFAULT_SAMPLE_RATE 48000
//
// MOD file structures
//
#pragma pack(1)
typedef struct {
muchar name[22];
muint length;
muchar finetune;
muchar volume;
muint reppnt;
muint replen;
} sample;
typedef struct {
muchar sampperiod;
muchar period;
muchar sampeffect;
muchar effect;
} note;
typedef struct {
muchar title[20];
sample samples[31];
muchar length; // length of tablepos
muchar protracker;
muchar patterntable[128];
muchar signature[4];
muchar speed;
} module;
#pragma pack()
//
// HxCMod Internal structures
//
typedef struct {
char* sampdata;
muint sampnum;
muint length;
muint reppnt;
muint replen;
mulong samppos;
muint period;
muchar volume;
mulong ticks;
muchar effect;
muchar parameffect;
muint effect_code;
mint decalperiod;
mint portaspeed;
mint portaperiod;
mint vibraperiod;
mint Arpperiods[3];
muchar ArpIndex;
mint oldk;
muchar volumeslide;
muchar vibraparam;
muchar vibrapointeur;
muchar finetune;
muchar cut_param;
muint patternloopcnt;
muint patternloopstartpoint;
} channel;
typedef struct {
module song;
char* sampledata[31];
note* patterndata[128];
mulong playrate;
muint tablepos;
muint patternpos;
muint patterndelay;
muint jump_loop_effect;
muchar bpm;
mulong patternticks;
mulong patterntickse;
mulong patternticksaim;
mulong sampleticksconst;
mulong samplenb;
channel channels[NUMMAXCHANNELS];
muint number_of_channels;
muint fullperiod[MAXNOTES * 8];
muint mod_loaded;
mint last_r_sample;
mint last_l_sample;
mint stereo;
mint stereo_separation;
mint bits;
mint filter;
muchar *modfile; // the raw mod file
mulong modfilesize;
muint loopcount;
} jar_mod_context_t;
//
// Player states structures
//
typedef struct track_state_
{
unsigned char instrument_number;
unsigned short cur_period;
unsigned char cur_volume;
unsigned short cur_effect;
unsigned short cur_parameffect;
}track_state;
typedef struct tracker_state_
{
int number_of_tracks;
int bpm;
int speed;
int cur_pattern;
int cur_pattern_pos;
int cur_pattern_table_pos;
unsigned int buf_index;
track_state tracks[32];
}tracker_state;
typedef struct tracker_state_instrument_
{
char name[22];
int active;
}tracker_state_instrument;
typedef struct jar_mod_tracker_buffer_state_
{
int nb_max_of_state;
int nb_of_state;
int cur_rd_index;
int sample_step;
char name[64];
tracker_state_instrument instruments[31];
tracker_state * track_state_buf;
}jar_mod_tracker_buffer_state;
#ifdef __cplusplus
extern "C" {
#endif
bool jar_mod_init(jar_mod_context_t * modctx);
bool jar_mod_setcfg(jar_mod_context_t * modctx, int samplerate, int bits, int stereo, int stereo_separation, int filter);
void jar_mod_fillbuffer(jar_mod_context_t * modctx, short * outbuffer, unsigned long nbsample, jar_mod_tracker_buffer_state * trkbuf);
void jar_mod_unload(jar_mod_context_t * modctx);
mulong jar_mod_load_file(jar_mod_context_t * modctx, const char* filename);
mulong jar_mod_current_samples(jar_mod_context_t * modctx);
mulong jar_mod_max_samples(jar_mod_context_t * modctx);
void jar_mod_seek_start(jar_mod_context_t * ctx);
#ifdef __cplusplus
}
#endif
//--------------------------------------------------------------------
//-------------------------------------------------------------------------------
#ifdef JAR_MOD_IMPLEMENTATION
#include <stdio.h>
#include <stdlib.h>
//#include <stdbool.h>
// Effects list
#define EFFECT_ARPEGGIO 0x0 // Supported
#define EFFECT_PORTAMENTO_UP 0x1 // Supported
#define EFFECT_PORTAMENTO_DOWN 0x2 // Supported
#define EFFECT_TONE_PORTAMENTO 0x3 // Supported
#define EFFECT_VIBRATO 0x4 // Supported
#define EFFECT_VOLSLIDE_TONEPORTA 0x5 // Supported
#define EFFECT_VOLSLIDE_VIBRATO 0x6 // Supported
#define EFFECT_VOLSLIDE_TREMOLO 0x7 // - TO BE DONE -
#define EFFECT_SET_PANNING 0x8 // - TO BE DONE -
#define EFFECT_SET_OFFSET 0x9 // Supported
#define EFFECT_VOLUME_SLIDE 0xA // Supported
#define EFFECT_JUMP_POSITION 0xB // Supported
#define EFFECT_SET_VOLUME 0xC // Supported
#define EFFECT_PATTERN_BREAK 0xD // Supported
#define EFFECT_EXTENDED 0xE
#define EFFECT_E_FINE_PORTA_UP 0x1 // Supported
#define EFFECT_E_FINE_PORTA_DOWN 0x2 // Supported
#define EFFECT_E_GLISSANDO_CTRL 0x3 // - TO BE DONE -
#define EFFECT_E_VIBRATO_WAVEFORM 0x4 // - TO BE DONE -
#define EFFECT_E_SET_FINETUNE 0x5 // - TO BE DONE -
#define EFFECT_E_PATTERN_LOOP 0x6 // Supported
#define EFFECT_E_TREMOLO_WAVEFORM 0x7 // - TO BE DONE -
#define EFFECT_E_SET_PANNING_2 0x8 // - TO BE DONE -
#define EFFECT_E_RETRIGGER_NOTE 0x9 // - TO BE DONE -
#define EFFECT_E_FINE_VOLSLIDE_UP 0xA // Supported
#define EFFECT_E_FINE_VOLSLIDE_DOWN 0xB // Supported
#define EFFECT_E_NOTE_CUT 0xC // Supported
#define EFFECT_E_NOTE_DELAY 0xD // - TO BE DONE -
#define EFFECT_E_PATTERN_DELAY 0xE // Supported
#define EFFECT_E_INVERT_LOOP 0xF // - TO BE DONE -
#define EFFECT_SET_SPEED 0xF0 // Supported
#define EFFECT_SET_TEMPO 0xF2 // Supported
#define PERIOD_TABLE_LENGTH MAXNOTES
#define FULL_PERIOD_TABLE_LENGTH ( PERIOD_TABLE_LENGTH * 8 )
static const short periodtable[]=
{
27392, 25856, 24384, 23040, 21696, 20480, 19328, 18240, 17216, 16256, 15360, 14496,
13696, 12928, 12192, 11520, 10848, 10240, 9664, 9120, 8606, 8128, 7680, 7248,
6848, 6464, 6096, 5760, 5424, 5120, 4832, 4560, 4304, 4064, 3840, 3624,
3424, 3232, 3048, 2880, 2712, 2560, 2416, 2280, 2152, 2032, 1920, 1812,
1712, 1616, 1524, 1440, 1356, 1280, 1208, 1140, 1076, 1016, 960, 906,
856, 808, 762, 720, 678, 640, 604, 570, 538, 508, 480, 453,
428, 404, 381, 360, 339, 320, 302, 285, 269, 254, 240, 226,
214, 202, 190, 180, 170, 160, 151, 143, 135, 127, 120, 113,
107, 101, 95, 90, 85, 80, 75, 71, 67, 63, 60, 56,
53, 50, 47, 45, 42, 40, 37, 35, 33, 31, 30, 28,
27, 25, 24, 22, 21, 20, 19, 18, 17, 16, 15, 14,
13, 13, 12, 11, 11, 10, 9, 9, 8, 8, 7, 7
};
static const short sintable[]={
0, 24, 49, 74, 97, 120, 141,161,
180, 197, 212, 224, 235, 244, 250,253,
255, 253, 250, 244, 235, 224, 212,197,
180, 161, 141, 120, 97, 74, 49, 24
};
typedef struct modtype_
{
unsigned char signature[5];
int numberofchannels;
}modtype;
modtype modlist[]=
{
{ "M!K!",4},
{ "M.K.",4},
{ "FLT4",4},
{ "FLT8",8},
{ "4CHN",4},
{ "6CHN",6},
{ "8CHN",8},
{ "10CH",10},
{ "12CH",12},
{ "14CH",14},
{ "16CH",16},
{ "18CH",18},
{ "20CH",20},
{ "22CH",22},
{ "24CH",24},
{ "26CH",26},
{ "28CH",28},
{ "30CH",30},
{ "32CH",32},
{ "",0}
};
///////////////////////////////////////////////////////////////////////////////////
static void memcopy( void * dest, void *source, unsigned long size )
{
unsigned long i;
unsigned char * d,*s;
d=(unsigned char*)dest;
s=(unsigned char*)source;
for(i=0;i<size;i++)
{
d[i]=s[i];
}
}
static void memclear( void * dest, unsigned char value, unsigned long size )
{
unsigned long i;
unsigned char * d;
d=(unsigned char*)dest;
for(i=0;i<size;i++)
{
d[i]=value;
}
}
static int memcompare( unsigned char * buf1, unsigned char * buf2, unsigned int size )
{
unsigned int i;
i = 0;
while(i<size)
{
if(buf1[i] != buf2[i])
{
return 0;
}
i++;
}
return 1;
}
static int getnote( jar_mod_context_t * mod, unsigned short period, int finetune )
{
int i;
for(i = 0; i < FULL_PERIOD_TABLE_LENGTH; i++)
{
if(period >= mod->fullperiod[i])
{
return i;
}
}
return MAXNOTES;
}
static void worknote( note * nptr, channel * cptr, char t, jar_mod_context_t * mod )
{
muint sample, period, effect, operiod;
muint curnote, arpnote;
sample = (nptr->sampperiod & 0xF0) | (nptr->sampeffect >> 4);
period = ((nptr->sampperiod & 0xF) << 8) | nptr->period;
effect = ((nptr->sampeffect & 0xF) << 8) | nptr->effect;
operiod = cptr->period;
if ( period || sample )
{
if( sample && sample < 32 )
{
cptr->sampnum = sample - 1;
}
if( period || sample )
{
cptr->sampdata = (char *) mod->sampledata[cptr->sampnum];
cptr->length = mod->song.samples[cptr->sampnum].length;
cptr->reppnt = mod->song.samples[cptr->sampnum].reppnt;
cptr->replen = mod->song.samples[cptr->sampnum].replen;
cptr->finetune = (mod->song.samples[cptr->sampnum].finetune)&0xF;
if(effect>>8!=4 && effect>>8!=6)
{
cptr->vibraperiod=0;
cptr->vibrapointeur=0;
}
}
if( (sample != 0) && ( (effect>>8) != EFFECT_VOLSLIDE_TONEPORTA ) )
{
cptr->volume = mod->song.samples[cptr->sampnum].volume;
cptr->volumeslide = 0;
}
if( ( (effect>>8) != EFFECT_TONE_PORTAMENTO && (effect>>8)!=EFFECT_VOLSLIDE_TONEPORTA) )
{
if (period!=0)
cptr->samppos = 0;
}
cptr->decalperiod = 0;
if( period )
{
if(cptr->finetune)
{
if( cptr->finetune <= 7 )
{
period = mod->fullperiod[getnote(mod,period,0) + cptr->finetune];
}
else
{
period = mod->fullperiod[getnote(mod,period,0) - (16 - (cptr->finetune)) ];
}
}
cptr->period = period;
}
}
cptr->effect = 0;
cptr->parameffect = 0;
cptr->effect_code = effect;
switch (effect >> 8)
{
case EFFECT_ARPEGGIO:
/*
[0]: Arpeggio
Where [0][x][y] means "play note, note+x semitones, note+y
semitones, then return to original note". The fluctuations are
carried out evenly spaced in one pattern division. They are usually
used to simulate chords, but this doesn't work too well. They are
also used to produce heavy vibrato. A major chord is when x=4, y=7.
A minor chord is when x=3, y=7.
*/
if(effect&0xff)
{
cptr->effect = EFFECT_ARPEGGIO;
cptr->parameffect = effect&0xff;
cptr->ArpIndex = 0;
curnote = getnote(mod,cptr->period,cptr->finetune);
cptr->Arpperiods[0] = cptr->period;
arpnote = curnote + (((cptr->parameffect>>4)&0xF)*8);
if( arpnote >= FULL_PERIOD_TABLE_LENGTH )
arpnote = FULL_PERIOD_TABLE_LENGTH - 1;
cptr->Arpperiods[1] = mod->fullperiod[arpnote];
arpnote = curnote + (((cptr->parameffect)&0xF)*8);
if( arpnote >= FULL_PERIOD_TABLE_LENGTH )
arpnote = FULL_PERIOD_TABLE_LENGTH - 1;
cptr->Arpperiods[2] = mod->fullperiod[arpnote];
}
break;
case EFFECT_PORTAMENTO_UP:
/*
[1]: Slide up
Where [1][x][y] means "smoothly decrease the period of current
sample by x*16+y after each tick in the division". The
ticks/division are set with the 'set speed' effect (see below). If
the period of the note being played is z, then the final period
will be z - (x*16 + y)*(ticks - 1). As the slide rate depends on
the speed, changing the speed will change the slide. You cannot
slide beyond the note B3 (period 113).
*/
cptr->effect = EFFECT_PORTAMENTO_UP;
cptr->parameffect = effect&0xff;
break;
case EFFECT_PORTAMENTO_DOWN:
/*
[2]: Slide down
Where [2][x][y] means "smoothly increase the period of current
sample by x*16+y after each tick in the division". Similar to [1],
but lowers the pitch. You cannot slide beyond the note C1 (period
856).
*/
cptr->effect = EFFECT_PORTAMENTO_DOWN;
cptr->parameffect = effect&0xff;
break;
case EFFECT_TONE_PORTAMENTO:
/*
[3]: Slide to note
Where [3][x][y] means "smoothly change the period of current sample
by x*16+y after each tick in the division, never sliding beyond
current period". The period-length in this channel's division is a
parameter to this effect, and hence is not played. Sliding to a
note is similar to effects [1] and [2], but the slide will not go
beyond the given period, and the direction is implied by that
period. If x and y are both 0, then the old slide will continue.
*/
cptr->effect = EFFECT_TONE_PORTAMENTO;
if( (effect&0xff) != 0 )
{
cptr->portaspeed = (short)(effect&0xff);
}
if(period!=0)
{
cptr->portaperiod = period;
cptr->period = operiod;
}
break;
case EFFECT_VIBRATO:
/*
[4]: Vibrato
Where [4][x][y] means "oscillate the sample pitch using a
particular waveform with amplitude y/16 semitones, such that (x *
ticks)/64 cycles occur in the division". The waveform is set using
effect [14][4]. By placing vibrato effects on consecutive
divisions, the vibrato effect can be maintained. If either x or y
are 0, then the old vibrato values will be used.
*/
cptr->effect = EFFECT_VIBRATO;
if( ( effect & 0x0F ) != 0 ) // Depth continue or change ?
cptr->vibraparam = (cptr->vibraparam & 0xF0) | ( effect & 0x0F );
if( ( effect & 0xF0 ) != 0 ) // Speed continue or change ?
cptr->vibraparam = (cptr->vibraparam & 0x0F) | ( effect & 0xF0 );
break;
case EFFECT_VOLSLIDE_TONEPORTA:
/*
[5]: Continue 'Slide to note', but also do Volume slide
Where [5][x][y] means "either slide the volume up x*(ticks - 1) or
slide the volume down y*(ticks - 1), at the same time as continuing
the last 'Slide to note'". It is illegal for both x and y to be
non-zero. You cannot slide outside the volume range 0..64. The
period-length in this channel's division is a parameter to this
effect, and hence is not played.
*/
if( period != 0 )
{
cptr->portaperiod = period;
cptr->period = operiod;
}
cptr->effect = EFFECT_VOLSLIDE_TONEPORTA;
if( ( effect & 0xFF ) != 0 )
cptr->volumeslide = ( effect & 0xFF );
break;
case EFFECT_VOLSLIDE_VIBRATO:
/*
[6]: Continue 'Vibrato', but also do Volume slide
Where [6][x][y] means "either slide the volume up x*(ticks - 1) or
slide the volume down y*(ticks - 1), at the same time as continuing
the last 'Vibrato'". It is illegal for both x and y to be non-zero.
You cannot slide outside the volume range 0..64.
*/
cptr->effect = EFFECT_VOLSLIDE_VIBRATO;
if( (effect & 0xFF) != 0 )
cptr->volumeslide = (effect & 0xFF);
break;
case EFFECT_SET_OFFSET:
/*
[9]: Set sample offset
Where [9][x][y] means "play the sample from offset x*4096 + y*256".
The offset is measured in words. If no sample is given, yet one is
still playing on this channel, it should be retriggered to the new
offset using the current volume.
*/
cptr->samppos = ((effect>>4) * 4096) + ((effect&0xF)*256);
break;
case EFFECT_VOLUME_SLIDE:
/*
[10]: Volume slide
Where [10][x][y] means "either slide the volume up x*(ticks - 1) or
slide the volume down y*(ticks - 1)". If both x and y are non-zero,
then the y value is ignored (assumed to be 0). You cannot slide
outside the volume range 0..64.
*/
cptr->effect = EFFECT_VOLUME_SLIDE;
cptr->volumeslide = (effect & 0xFF);
break;
case EFFECT_JUMP_POSITION:
/*
[11]: Position Jump
Where [11][x][y] means "stop the pattern after this division, and
continue the song at song-position x*16+y". This shifts the
'pattern-cursor' in the pattern table (see above). Legal values for
x*16+y are from 0 to 127.
*/
mod->tablepos = (effect & 0xFF);
if(mod->tablepos >= mod->song.length)
{
mod->tablepos = 0;
}
mod->patternpos = 0;
mod->jump_loop_effect = 1;
break;
case EFFECT_SET_VOLUME:
/*
[12]: Set volume
Where [12][x][y] means "set current sample's volume to x*16+y".
Legal volumes are 0..64.
*/
cptr->volume = (effect & 0xFF);
break;
case EFFECT_PATTERN_BREAK:
/*
[13]: Pattern Break
Where [13][x][y] means "stop the pattern after this division, and
continue the song at the next pattern at division x*10+y" (the 10
is not a typo). Legal divisions are from 0 to 63 (note Protracker
exception above).
*/
mod->patternpos = ( ((effect>>4)&0xF)*10 + (effect&0xF) ) * mod->number_of_channels;
mod->jump_loop_effect = 1;
mod->tablepos++;
if(mod->tablepos >= mod->song.length)
{
mod->tablepos = 0;
}
break;
case EFFECT_EXTENDED:
switch( (effect>>4) & 0xF )
{
case EFFECT_E_FINE_PORTA_UP:
/*
[14][1]: Fineslide up
Where [14][1][x] means "decrement the period of the current sample
by x". The incrementing takes place at the beginning of the
division, and hence there is no actual sliding. You cannot slide
beyond the note B3 (period 113).
*/
cptr->period -= (effect & 0xF);
if( cptr->period < 113 )
cptr->period = 113;
break;
case EFFECT_E_FINE_PORTA_DOWN:
/*
[14][2]: Fineslide down
Where [14][2][x] means "increment the period of the current sample
by x". Similar to [14][1] but shifts the pitch down. You cannot
slide beyond the note C1 (period 856).
*/
cptr->period += (effect & 0xF);
if( cptr->period > 856 )
cptr->period = 856;
break;
case EFFECT_E_FINE_VOLSLIDE_UP:
/*
[14][10]: Fine volume slide up
Where [14][10][x] means "increment the volume of the current sample
by x". The incrementing takes place at the beginning of the
division, and hence there is no sliding. You cannot slide beyond
volume 64.
*/
cptr->volume += (effect & 0xF);
if( cptr->volume>64 )
cptr->volume = 64;
break;
case EFFECT_E_FINE_VOLSLIDE_DOWN:
/*
[14][11]: Fine volume slide down
Where [14][11][x] means "decrement the volume of the current sample
by x". Similar to [14][10] but lowers volume. You cannot slide
beyond volume 0.
*/
cptr->volume -= (effect & 0xF);
if( cptr->volume > 200 )
cptr->volume = 0;
break;
case EFFECT_E_PATTERN_LOOP:
/*
[14][6]: Loop pattern
Where [14][6][x] means "set the start of a loop to this division if
x is 0, otherwise after this division, jump back to the start of a
loop and play it another x times before continuing". If the start
of the loop was not set, it will default to the start of the
current pattern. Hence 'loop pattern' cannot be performed across
multiple patterns. Note that loops do not support nesting, and you
may generate an infinite loop if you try to nest 'loop pattern's.
*/
if( effect & 0xF )
{
if( cptr->patternloopcnt )
{
cptr->patternloopcnt--;
if( cptr->patternloopcnt )
{
mod->patternpos = cptr->patternloopstartpoint;
mod->jump_loop_effect = 1;
}
else
{
cptr->patternloopstartpoint = mod->patternpos ;
}
}
else
{
cptr->patternloopcnt = (effect & 0xF);
mod->patternpos = cptr->patternloopstartpoint;
mod->jump_loop_effect = 1;
}
}
else // Start point
{
cptr->patternloopstartpoint = mod->patternpos;
}
break;
case EFFECT_E_PATTERN_DELAY:
/*
[14][14]: Delay pattern
Where [14][14][x] means "after this division there will be a delay
equivalent to the time taken to play x divisions after which the
pattern will be resumed". The delay only relates to the
interpreting of new divisions, and all effects and previous notes
continue during delay.
*/
mod->patterndelay = (effect & 0xF);
break;
case EFFECT_E_NOTE_CUT:
/*
[14][12]: Cut sample
Where [14][12][x] means "after the current sample has been played
for x ticks in this division, its volume will be set to 0". This
implies that if x is 0, then you will not hear any of the sample.
If you wish to insert "silence" in a pattern, it is better to use a
"silence"-sample (see above) due to the lack of proper support for
this effect.
*/
cptr->effect = EFFECT_E_NOTE_CUT;
cptr->cut_param = (effect & 0xF);
if(!cptr->cut_param)
cptr->volume = 0;
break;
default:
break;
}
break;
case 0xF:
/*
[15]: Set speed
Where [15][x][y] means "set speed to x*16+y". Though it is nowhere
near that simple. Let z = x*16+y. Depending on what values z takes,
different units of speed are set, there being two: ticks/division
and beats/minute (though this one is only a label and not strictly
true). If z=0, then what should technically happen is that the
module stops, but in practice it is treated as if z=1, because
there is already a method for stopping the module (running out of
patterns). If z<=32, then it means "set ticks/division to z"
otherwise it means "set beats/minute to z" (convention says that
this should read "If z<32.." but there are some composers out there
that defy conventions). Default values are 6 ticks/division, and
125 beats/minute (4 divisions = 1 beat). The beats/minute tag is
only meaningful for 6 ticks/division. To get a more accurate view
of how things work, use the following formula:
24 * beats/minute
divisions/minute = -----------------
ticks/division
Hence divisions/minute range from 24.75 to 6120, eg. to get a value
of 2000 divisions/minute use 3 ticks/division and 250 beats/minute.
If multiple "set speed" effects are performed in a single division,
the ones on higher-numbered channels take precedence over the ones
on lower-numbered channels. This effect has a large number of
different implementations, but the one described here has the
widest usage.
*/
if( (effect&0xFF) < 0x21 )
{
if( effect&0xFF )
{
mod->song.speed = effect&0xFF;
mod->patternticksaim = (long)mod->song.speed * ((mod->playrate * 5 ) / (((long)2 * (long)mod->bpm)));
}
}
if( (effect&0xFF) >= 0x21 )
{
/// HZ = 2 * BPM / 5
mod->bpm = effect&0xFF;
mod->patternticksaim = (long)mod->song.speed * ((mod->playrate * 5 ) / (((long)2 * (long)mod->bpm)));
}
break;
default:
// Unsupported effect
break;
}
}
static void workeffect( note * nptr, channel * cptr )
{
switch(cptr->effect)
{
case EFFECT_ARPEGGIO:
if( cptr->parameffect )
{
cptr->decalperiod = cptr->period - cptr->Arpperiods[cptr->ArpIndex];
cptr->ArpIndex++;
if( cptr->ArpIndex>2 )
cptr->ArpIndex = 0;
}
break;
case EFFECT_PORTAMENTO_UP:
if(cptr->period)
{
cptr->period -= cptr->parameffect;
if( cptr->period < 113 || cptr->period > 20000 )
cptr->period = 113;
}
break;
case EFFECT_PORTAMENTO_DOWN:
if(cptr->period)
{
cptr->period += cptr->parameffect;
if( cptr->period > 20000 )
cptr->period = 20000;
}
break;
case EFFECT_VOLSLIDE_TONEPORTA:
case EFFECT_TONE_PORTAMENTO:
if( cptr->period && ( cptr->period != cptr->portaperiod ) && cptr->portaperiod )
{
if( cptr->period > cptr->portaperiod )
{
if( cptr->period - cptr->portaperiod >= cptr->portaspeed )
{
cptr->period -= cptr->portaspeed;
}
else
{
cptr->period = cptr->portaperiod;
}
}
else
{
if( cptr->portaperiod - cptr->period >= cptr->portaspeed )
{
cptr->period += cptr->portaspeed;
}
else
{
cptr->period = cptr->portaperiod;
}
}
if( cptr->period == cptr->portaperiod )
{
// If the slide is over, don't let it to be retriggered.
cptr->portaperiod = 0;
}
}
if( cptr->effect == EFFECT_VOLSLIDE_TONEPORTA )
{
if( cptr->volumeslide > 0x0F )
{
cptr->volume = cptr->volume + (cptr->volumeslide>>4);
if(cptr->volume>63)
cptr->volume = 63;
}
else
{
cptr->volume = cptr->volume - (cptr->volumeslide);
if(cptr->volume>63)
cptr->volume=0;
}
}
break;
case EFFECT_VOLSLIDE_VIBRATO:
case EFFECT_VIBRATO:
cptr->vibraperiod = ( (cptr->vibraparam&0xF) * sintable[cptr->vibrapointeur&0x1F] )>>7;
if( cptr->vibrapointeur > 31 )
cptr->vibraperiod = -cptr->vibraperiod;
cptr->vibrapointeur = (cptr->vibrapointeur+(((cptr->vibraparam>>4))&0xf)) & 0x3F;
if( cptr->effect == EFFECT_VOLSLIDE_VIBRATO )
{
if( cptr->volumeslide > 0xF )
{
cptr->volume = cptr->volume+(cptr->volumeslide>>4);
if( cptr->volume > 64 )
cptr->volume = 64;
}
else
{
cptr->volume = cptr->volume - cptr->volumeslide;
if( cptr->volume > 64 )
cptr->volume = 0;
}
}
break;
case EFFECT_VOLUME_SLIDE:
if( cptr->volumeslide > 0xF )
{
cptr->volume += (cptr->volumeslide>>4);
if( cptr->volume > 64 )
cptr->volume = 64;
}
else
{
cptr->volume -= (cptr->volumeslide&0xf);
if( cptr->volume > 64 )
cptr->volume = 0;
}
break;
case EFFECT_E_NOTE_CUT:
if(cptr->cut_param)
cptr->cut_param--;
if(!cptr->cut_param)
cptr->volume = 0;
break;
default:
break;
}
}
///////////////////////////////////////////////////////////////////////////////////
bool jar_mod_init(jar_mod_context_t * modctx)
{
muint i,j;
if( modctx )
{
memclear(modctx, 0, sizeof(jar_mod_context_t));
modctx->playrate = DEFAULT_SAMPLE_RATE;
modctx->stereo = 1;
modctx->stereo_separation = 1;
modctx->bits = 16;
modctx->filter = 1;
for(i=0; i < PERIOD_TABLE_LENGTH - 1; i++)
{
for(j=0; j < 8; j++)
{
modctx->fullperiod[(i*8) + j] = periodtable[i] - ((( periodtable[i] - periodtable[i+1] ) / 8) * j);
}
}
return 1;
}
return 0;
}
bool jar_mod_setcfg(jar_mod_context_t * modctx, int samplerate, int bits, int stereo, int stereo_separation, int filter)
{
if( modctx )
{
modctx->playrate = samplerate;
if( stereo )
modctx->stereo = 1;
else
modctx->stereo = 0;
if(stereo_separation < 4)
{
modctx->stereo_separation = stereo_separation;
}
if( bits == 8 || bits == 16 )
modctx->bits = bits;
else
modctx->bits = 16;
if( filter )
modctx->filter = 1;
else
modctx->filter = 0;
return 1;
}
return 0;
}
// make certain that mod_data stays in memory while playing
static bool jar_mod_load( jar_mod_context_t * modctx, void * mod_data, int mod_data_size )
{
muint i, max;
unsigned short t;
sample *sptr;
unsigned char * modmemory,* endmodmemory;
modmemory = (unsigned char *)mod_data;
endmodmemory = modmemory + mod_data_size;
if(modmemory)
{
if( modctx )
{
memcopy(&(modctx->song.title),modmemory,1084);
i = 0;
modctx->number_of_channels = 0;
while(modlist[i].numberofchannels)
{
if(memcompare(modctx->song.signature,modlist[i].signature,4))
{
modctx->number_of_channels = modlist[i].numberofchannels;
}
i++;
}
if( !modctx->number_of_channels )
{
// 15 Samples modules support
// Shift the whole datas to make it look likes a standard 4 channels mod.
memcopy(&(modctx->song.signature), "M.K.", 4);
memcopy(&(modctx->song.length), &(modctx->song.samples[15]), 130);
memclear(&(modctx->song.samples[15]), 0, 480);
modmemory += 600;
modctx->number_of_channels = 4;
}
else
{
modmemory += 1084;
}
if( modmemory >= endmodmemory )
return 0; // End passed ? - Probably a bad file !
// Patterns loading
for (i = max = 0; i < 128; i++)
{
while (max <= modctx->song.patterntable[i])
{
modctx->patterndata[max] = (note*)modmemory;
modmemory += (256*modctx->number_of_channels);
max++;
if( modmemory >= endmodmemory )
return 0; // End passed ? - Probably a bad file !
}
}
for (i = 0; i < 31; i++)
modctx->sampledata[i]=0;
// Samples loading
for (i = 0, sptr = modctx->song.samples; i <31; i++, sptr++)
{
t= (sptr->length &0xFF00)>>8 | (sptr->length &0xFF)<<8;
sptr->length = t*2;
t= (sptr->reppnt &0xFF00)>>8 | (sptr->reppnt &0xFF)<<8;
sptr->reppnt = t*2;
t= (sptr->replen &0xFF00)>>8 | (sptr->replen &0xFF)<<8;
sptr->replen = t*2;
if (sptr->length == 0) continue;
modctx->sampledata[i] = (char*)modmemory;
modmemory += sptr->length;
if (sptr->replen + sptr->reppnt > sptr->length)
sptr->replen = sptr->length - sptr->reppnt;
if( modmemory > endmodmemory )
return 0; // End passed ? - Probably a bad file !
}
// States init
modctx->tablepos = 0;
modctx->patternpos = 0;
modctx->song.speed = 6;
modctx->bpm = 125;
modctx->samplenb = 0;
modctx->patternticks = (((long)modctx->song.speed * modctx->playrate * 5)/ (2 * modctx->bpm)) + 1;
modctx->patternticksaim = ((long)modctx->song.speed * modctx->playrate * 5) / (2 * modctx->bpm);
modctx->sampleticksconst = 3546894UL / modctx->playrate; //8448*428/playrate;
for(i=0; i < modctx->number_of_channels; i++)
{
modctx->channels[i].volume = 0;
modctx->channels[i].period = 0;
}
modctx->mod_loaded = 1;
return 1;
}
}
return 0;
}
void jar_mod_fillbuffer( jar_mod_context_t * modctx, short * outbuffer, unsigned long nbsample, jar_mod_tracker_buffer_state * trkbuf )
{
unsigned long i, j;
unsigned long k;
unsigned char c;
unsigned int state_remaining_steps;
int l,r;
int ll,lr;
int tl,tr;
short finalperiod;
note *nptr;
channel *cptr;
if( modctx && outbuffer )
{
if(modctx->mod_loaded)
{
state_remaining_steps = 0;
if( trkbuf )
{
trkbuf->cur_rd_index = 0;
memcopy(trkbuf->name,modctx->song.title,sizeof(modctx->song.title));
for(i=0;i<31;i++)
{
memcopy(trkbuf->instruments[i].name,modctx->song.samples[i].name,sizeof(trkbuf->instruments[i].name));
}
}
ll = modctx->last_l_sample;
lr = modctx->last_r_sample;
for (i = 0; i < nbsample; i++)
{
//---------------------------------------
if( modctx->patternticks++ > modctx->patternticksaim )
{
if( !modctx->patterndelay )
{
nptr = modctx->patterndata[modctx->song.patterntable[modctx->tablepos]];
nptr = nptr + modctx->patternpos;
cptr = modctx->channels;
modctx->patternticks = 0;
modctx->patterntickse = 0;
for(c=0;c<modctx->number_of_channels;c++)
{
worknote((note*)(nptr+c), (channel*)(cptr+c),(char)(c+1),modctx);
}
if( !modctx->jump_loop_effect )
modctx->patternpos += modctx->number_of_channels;
else
modctx->jump_loop_effect = 0;
if( modctx->patternpos == 64*modctx->number_of_channels )
{
modctx->tablepos++;
modctx->patternpos = 0;
if(modctx->tablepos >= modctx->song.length)
{
modctx->tablepos = 0;
modctx->loopcount++; // count next loop
}
}
}
else
{
modctx->patterndelay--;
modctx->patternticks = 0;
modctx->patterntickse = 0;
}
}
if( modctx->patterntickse++ > (modctx->patternticksaim/modctx->song.speed) )
{
nptr = modctx->patterndata[modctx->song.patterntable[modctx->tablepos]];
nptr = nptr + modctx->patternpos;
cptr = modctx->channels;
for(c=0;c<modctx->number_of_channels;c++)
{
workeffect(nptr+c, cptr+c);
}
modctx->patterntickse = 0;
}
//---------------------------------------
if( trkbuf && !state_remaining_steps )
{
if( trkbuf->nb_of_state < trkbuf->nb_max_of_state )
{
memclear(&trkbuf->track_state_buf[trkbuf->nb_of_state], 0, sizeof(tracker_state));
}
}
l=0;
r=0;
for(j =0, cptr = modctx->channels; j < modctx->number_of_channels ; j++, cptr++)
{
if( cptr->period != 0 )
{
finalperiod = cptr->period - cptr->decalperiod - cptr->vibraperiod;
if( finalperiod )
{
cptr->samppos += ( (modctx->sampleticksconst<<10) / finalperiod );
}
cptr->ticks++;
if( cptr->replen<=2 )
{
if( (cptr->samppos>>10) >= (cptr->length) )
{
cptr->length = 0;
cptr->reppnt = 0;
if( cptr->length )
cptr->samppos = cptr->samppos % (((unsigned long)cptr->length)<<10);
else
cptr->samppos = 0;
}
}
else
{
if( (cptr->samppos>>10) >= (unsigned long)(cptr->replen+cptr->reppnt) )
{
cptr->samppos = ((unsigned long)(cptr->reppnt)<<10) + (cptr->samppos % ((unsigned long)(cptr->replen+cptr->reppnt)<<10));
}
}
k = cptr->samppos >> 10;
if( cptr->sampdata!=0 && ( ((j&3)==1) || ((j&3)==2) ) )
{
r += ( cptr->sampdata[k] * cptr->volume );
}
if( cptr->sampdata!=0 && ( ((j&3)==0) || ((j&3)==3) ) )
{
l += ( cptr->sampdata[k] * cptr->volume );
}
if( trkbuf && !state_remaining_steps )
{
if( trkbuf->nb_of_state < trkbuf->nb_max_of_state )
{
trkbuf->track_state_buf[trkbuf->nb_of_state].number_of_tracks = modctx->number_of_channels;
trkbuf->track_state_buf[trkbuf->nb_of_state].buf_index = i;
trkbuf->track_state_buf[trkbuf->nb_of_state].cur_pattern = modctx->song.patterntable[modctx->tablepos];
trkbuf->track_state_buf[trkbuf->nb_of_state].cur_pattern_pos = modctx->patternpos / modctx->number_of_channels;
trkbuf->track_state_buf[trkbuf->nb_of_state].cur_pattern_table_pos = modctx->tablepos;
trkbuf->track_state_buf[trkbuf->nb_of_state].bpm = modctx->bpm;
trkbuf->track_state_buf[trkbuf->nb_of_state].speed = modctx->song.speed;
trkbuf->track_state_buf[trkbuf->nb_of_state].tracks[j].cur_effect = cptr->effect_code;
trkbuf->track_state_buf[trkbuf->nb_of_state].tracks[j].cur_parameffect = cptr->parameffect;
trkbuf->track_state_buf[trkbuf->nb_of_state].tracks[j].cur_period = finalperiod;
trkbuf->track_state_buf[trkbuf->nb_of_state].tracks[j].cur_volume = cptr->volume;
trkbuf->track_state_buf[trkbuf->nb_of_state].tracks[j].instrument_number = (unsigned char)cptr->sampnum;
}
}
}
}
if( trkbuf && !state_remaining_steps )
{
state_remaining_steps = trkbuf->sample_step;
if(trkbuf->nb_of_state < trkbuf->nb_max_of_state)
trkbuf->nb_of_state++;
}
else
{
state_remaining_steps--;
}
tl = (short)l;
tr = (short)r;
if ( modctx->filter )
{
// Filter
l = (l+ll)>>1;
r = (r+lr)>>1;
}
if ( modctx->stereo_separation == 1 )
{
// Left & Right Stereo panning
l = (l+(r>>1));
r = (r+(l>>1));
}
// Level limitation
if( l > 32767 ) l = 32767;
if( l < -32768 ) l = -32768;
if( r > 32767 ) r = 32767;
if( r < -32768 ) r = -32768;
// Store the final sample.
outbuffer[(i*2)] = l;
outbuffer[(i*2)+1] = r;
ll = tl;
lr = tr;
}
modctx->last_l_sample = ll;
modctx->last_r_sample = lr;
modctx->samplenb = modctx->samplenb+nbsample;
}
else
{
for (i = 0; i < nbsample; i++)
{
// Mod not loaded. Return blank buffer.
outbuffer[(i*2)] = 0;
outbuffer[(i*2)+1] = 0;
}
if(trkbuf)
{
trkbuf->nb_of_state = 0;
trkbuf->cur_rd_index = 0;
trkbuf->name[0] = 0;
memclear(trkbuf->track_state_buf, 0, sizeof(tracker_state) * trkbuf->nb_max_of_state);
memclear(trkbuf->instruments, 0, sizeof(trkbuf->instruments));
}
}
}
}
//resets internals for mod context
static bool jar_mod_reset( jar_mod_context_t * modctx)
{
if(modctx)
{
memclear(&modctx->song, 0, sizeof(modctx->song));
memclear(&modctx->sampledata, 0, sizeof(modctx->sampledata));
memclear(&modctx->patterndata, 0, sizeof(modctx->patterndata));
modctx->tablepos = 0;
modctx->patternpos = 0;
modctx->patterndelay = 0;
modctx->jump_loop_effect = 0;
modctx->bpm = 0;
modctx->patternticks = 0;
modctx->patterntickse = 0;
modctx->patternticksaim = 0;
modctx->sampleticksconst = 0;
modctx->samplenb = 0;
memclear(modctx->channels, 0, sizeof(modctx->channels));
modctx->number_of_channels = 0;
modctx->mod_loaded = 0;
modctx->last_r_sample = 0;
modctx->last_l_sample = 0;
return jar_mod_init(modctx);
}
return 0;
}
void jar_mod_unload( jar_mod_context_t * modctx)
{
if(modctx)
{
if(modctx->modfile)
{
JARMOD_FREE(modctx->modfile);
modctx->modfile = 0;
modctx->modfilesize = 0;
modctx->loopcount = 0;
}
jar_mod_reset(modctx);
}
}
mulong jar_mod_load_file(jar_mod_context_t * modctx, const char* filename)
{
mulong fsize = 0;
if(modctx->modfile)
{
JARMOD_FREE(modctx->modfile);
modctx->modfile = 0;
}
FILE *f = fopen(filename, "rb");
if(f)
{
fseek(f,0,SEEK_END);
fsize = ftell(f);
fseek(f,0,SEEK_SET);
if(fsize && fsize < 32*1024*1024)
{
modctx->modfile = JARMOD_MALLOC(fsize);
modctx->modfilesize = fsize;
memset(modctx->modfile, 0, fsize);
fread(modctx->modfile, fsize, 1, f);
fclose(f);
if(!jar_mod_load(modctx, (void*)modctx->modfile, fsize)) fsize = 0;
} else fsize = 0;
}
return fsize;
}
mulong jar_mod_current_samples(jar_mod_context_t * modctx)
{
if(modctx)
return modctx->samplenb;
return 0;
}
// Works, however it is very slow, this data should be cached to ensure it is run only once per file
mulong jar_mod_max_samples(jar_mod_context_t * ctx)
{
mint buff[2];
mulong len;
mulong lastcount = ctx->loopcount;
while(ctx->loopcount <= lastcount)
jar_mod_fillbuffer(ctx, buff, 1, 0);
len = ctx->samplenb;
jar_mod_seek_start(ctx);
return len;
}
// move seek_val to sample index, 0 -> jar_mod_max_samples is the range
void jar_mod_seek_start(jar_mod_context_t * ctx)
{
if(ctx && ctx->modfile)
{
muchar* ftmp = ctx->modfile;
mulong stmp = ctx->modfilesize;
muint lcnt = ctx->loopcount;
if(jar_mod_reset(ctx)){
jar_mod_load(ctx, ftmp, stmp);
ctx->modfile = ftmp;
ctx->modfilesize = stmp;
ctx->loopcount = lcnt;
}
}
}
#endif // end of JAR_MOD_IMPLEMENTATION
//-------------------------------------------------------------------------------
#endif //end of header file