Shipwright/StormLib/src/pklib/implode.c

677 lines
26 KiB
C

/*****************************************************************************/
/* implode.c Copyright (c) Ladislav Zezula 2003 */
/*---------------------------------------------------------------------------*/
/* Implode function of PKWARE Data Compression library */
/*---------------------------------------------------------------------------*/
/* Date Ver Who Comment */
/* -------- ---- --- ------- */
/* 11.04.03 1.00 Lad First version of implode.c */
/* 02.05.03 1.00 Lad Stress test done */
/* 22.04.10 1.01 Lad Documented */
/*****************************************************************************/
#include <assert.h>
#include <string.h>
#include "pklib.h"
#if ((1200 < _MSC_VER) && (_MSC_VER < 1400))
#pragma optimize("", off) // Fucking Microsoft VS.NET 2003 compiler !!! (_MSC_VER=1310)
#endif
//-----------------------------------------------------------------------------
// Defines
#define MAX_REP_LENGTH 0x204 // The longest allowed repetition
//-----------------------------------------------------------------------------
// Macros
// Macro for calculating hash of the current byte pair.
// Note that most exact byte pair hash would be buffer[0] + buffer[1] << 0x08,
// but even this way gives nice indication of equal byte pairs, with significantly
// smaller size of the array that holds numbers of those hashes
#define BYTE_PAIR_HASH(buffer) ((buffer[0] * 4) + (buffer[1] * 5))
//-----------------------------------------------------------------------------
// Local functions
// Builds the "hash_to_index" table and "pair_hash_offsets" table.
// Every element of "hash_to_index" will contain lowest index to the
// "pair_hash_offsets" table, effectively giving offset of the first
// occurence of the given PAIR_HASH in the input data.
static void SortBuffer(TCmpStruct * pWork, unsigned char * buffer_begin, unsigned char * buffer_end)
{
unsigned short * phash_to_index;
unsigned char * buffer_ptr;
unsigned short total_sum = 0;
unsigned long byte_pair_hash; // Hash value of the byte pair
unsigned short byte_pair_offs; // Offset of the byte pair, relative to "work_buff"
// Zero the entire "phash_to_index" table
memset(pWork->phash_to_index, 0, sizeof(pWork->phash_to_index));
// Step 1: Count amount of each PAIR_HASH in the input buffer
// The table will look like this:
// offs 0x000: Number of occurences of PAIR_HASH 0
// offs 0x001: Number of occurences of PAIR_HASH 1
// ...
// offs 0x8F7: Number of occurences of PAIR_HASH 0x8F7 (the highest hash value)
for(buffer_ptr = buffer_begin; buffer_ptr < buffer_end; buffer_ptr++)
pWork->phash_to_index[BYTE_PAIR_HASH(buffer_ptr)]++;
// Step 2: Convert the table to the array of PAIR_HASH amounts.
// Each element contains count of PAIR_HASHes that is less or equal
// to element index
// The table will look like this:
// offs 0x000: Number of occurences of PAIR_HASH 0 or lower
// offs 0x001: Number of occurences of PAIR_HASH 1 or lower
// ...
// offs 0x8F7: Number of occurences of PAIR_HASH 0x8F7 or lower
for(phash_to_index = pWork->phash_to_index; phash_to_index < &pWork->phash_to_index_end; phash_to_index++)
{
total_sum = total_sum + phash_to_index[0];
phash_to_index[0] = total_sum;
}
// Step 3: Convert the table to the array of indexes.
// Now, each element contains index to the first occurence of given PAIR_HASH
for(buffer_end--; buffer_end >= buffer_begin; buffer_end--)
{
byte_pair_hash = BYTE_PAIR_HASH(buffer_end);
byte_pair_offs = (unsigned short)(buffer_end - pWork->work_buff);
pWork->phash_to_index[byte_pair_hash]--;
pWork->phash_offs[pWork->phash_to_index[byte_pair_hash]] = byte_pair_offs;
}
}
static void FlushBuf(TCmpStruct * pWork)
{
unsigned char save_ch1;
unsigned char save_ch2;
unsigned int size = 0x800;
pWork->write_buf(pWork->out_buff, &size, pWork->param);
save_ch1 = pWork->out_buff[0x800];
save_ch2 = pWork->out_buff[pWork->out_bytes];
pWork->out_bytes -= 0x800;
memset(pWork->out_buff, 0, sizeof(pWork->out_buff));
if(pWork->out_bytes != 0)
pWork->out_buff[0] = save_ch1;
if(pWork->out_bits != 0)
pWork->out_buff[pWork->out_bytes] = save_ch2;
}
static void OutputBits(TCmpStruct * pWork, unsigned int nbits, unsigned long bit_buff)
{
unsigned int out_bits;
// If more than 8 bits to output, do recursion
if(nbits > 8)
{
OutputBits(pWork, 8, bit_buff);
bit_buff >>= 8;
nbits -= 8;
}
// Add bits to the last out byte in out_buff;
out_bits = pWork->out_bits;
pWork->out_buff[pWork->out_bytes] |= (unsigned char)(bit_buff << out_bits);
pWork->out_bits += nbits;
// If 8 or more bits, increment number of bytes
if(pWork->out_bits > 8)
{
pWork->out_bytes++;
bit_buff >>= (8 - out_bits);
pWork->out_buff[pWork->out_bytes] = (unsigned char)bit_buff;
pWork->out_bits &= 7;
}
else
{
pWork->out_bits &= 7;
if(pWork->out_bits == 0)
pWork->out_bytes++;
}
// If there is enough compressed bytes, flush them
if(pWork->out_bytes >= 0x800)
FlushBuf(pWork);
}
// This function searches for a repetition
// (a previous occurence of the current byte sequence)
// Returns length of the repetition, and stores the backward distance
// to pWork structure.
static unsigned int FindRep(TCmpStruct * pWork, unsigned char * input_data)
{
unsigned short * phash_to_index; // Pointer into pWork->phash_to_index table
unsigned short * phash_offs; // Pointer to the table containing offsets of each PAIR_HASH
unsigned char * repetition_limit; // An eventual repetition must be at position below this pointer
unsigned char * prev_repetition; // Pointer to the previous occurence of the current PAIR_HASH
unsigned char * prev_rep_end; // End of the previous repetition
unsigned char * input_data_ptr;
unsigned short phash_offs_index; // Index to the table with PAIR_HASH positions
unsigned short min_phash_offs; // The lowest allowed hash offset
unsigned short offs_in_rep; // Offset within found repetition
unsigned int equal_byte_count; // Number of bytes that are equal to the previous occurence
unsigned int rep_length = 1; // Length of the found repetition
unsigned int rep_length2; // Secondary repetition
unsigned char pre_last_byte; // Last but one byte from a repetion
unsigned short di_val;
// Calculate the previous position of the PAIR_HASH
phash_to_index = pWork->phash_to_index + BYTE_PAIR_HASH(input_data);
min_phash_offs = (unsigned short)((input_data - pWork->work_buff) - pWork->dsize_bytes + 1);
phash_offs_index = phash_to_index[0];
// If the PAIR_HASH offset is below the limit, find a next one
phash_offs = pWork->phash_offs + phash_offs_index;
if(*phash_offs < min_phash_offs)
{
while(*phash_offs < min_phash_offs)
{
phash_offs_index++;
phash_offs++;
}
*phash_to_index = phash_offs_index;
}
// Get the first location of the PAIR_HASH,
// and thus the first eventual location of byte repetition
phash_offs = pWork->phash_offs + phash_offs_index;
prev_repetition = pWork->work_buff + phash_offs[0];
repetition_limit = input_data - 1;
// If the current PAIR_HASH was not encountered before,
// we haven't found a repetition.
if(prev_repetition >= repetition_limit)
return 0;
// We have found a match of a PAIR_HASH. Now we have to make sure
// that it is also a byte match, because PAIR_HASH is not unique.
// We compare the bytes and count the length of the repetition
input_data_ptr = input_data;
for(;;)
{
// If the first byte of the repetition and the so-far-last byte
// of the repetition are equal, we will compare the blocks.
if(*input_data_ptr == *prev_repetition && input_data_ptr[rep_length-1] == prev_repetition[rep_length-1])
{
// Skip the current byte
prev_repetition++;
input_data_ptr++;
equal_byte_count = 2;
// Now count how many more bytes are equal
while(equal_byte_count < MAX_REP_LENGTH)
{
prev_repetition++;
input_data_ptr++;
// Are the bytes different ?
if(*prev_repetition != *input_data_ptr)
break;
equal_byte_count++;
}
// If we found a repetition of at least the same length, take it.
// If there are multiple repetitions in the input buffer, this will
// make sure that we find the most recent one, which in turn allows
// us to store backward length in less amount of bits
input_data_ptr = input_data;
if(equal_byte_count >= rep_length)
{
// Calculate the backward distance of the repetition.
// Note that the distance is stored as decremented by 1
pWork->distance = (unsigned int)(input_data - prev_repetition + equal_byte_count - 1);
// Repetitions longer than 10 bytes will be stored in more bits,
// so they need a bit different handling
if((rep_length = equal_byte_count) > 10)
break;
}
}
// Move forward in the table of PAIR_HASH repetitions.
// There might be a more recent occurence of the same repetition.
phash_offs_index++;
phash_offs++;
prev_repetition = pWork->work_buff + phash_offs[0];
// If the next repetition is beyond the minimum allowed repetition, we are done.
if(prev_repetition >= repetition_limit)
{
// A repetition must have at least 2 bytes, otherwise it's not worth it
return (rep_length >= 2) ? rep_length : 0;
}
}
// If the repetition has max length of 0x204 bytes, we can't go any fuhrter
if(equal_byte_count == MAX_REP_LENGTH)
{
pWork->distance--;
return equal_byte_count;
}
// Check for possibility of a repetition that occurs at more recent position
phash_offs = pWork->phash_offs + phash_offs_index;
if(pWork->work_buff + phash_offs[1] >= repetition_limit)
return rep_length;
//
// The following part checks if there isn't a longer repetition at
// a latter offset, that would lead to better compression.
//
// Example of data that can trigger this optimization:
//
// "EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEQQQQQQQQQQQQ"
// "XYZ"
// "EEEEEEEEEEEEEEEEQQQQQQQQQQQQ";
//
// Description of data in this buffer
// [0x00] Single byte "E"
// [0x01] Single byte "E"
// [0x02] Repeat 0x1E bytes from [0x00]
// [0x20] Single byte "X"
// [0x21] Single byte "Y"
// [0x22] Single byte "Z"
// [0x23] 17 possible previous repetitions of length at least 0x10 bytes:
// - Repetition of 0x10 bytes from [0x00] "EEEEEEEEEEEEEEEE"
// - Repetition of 0x10 bytes from [0x01] "EEEEEEEEEEEEEEEE"
// - Repetition of 0x10 bytes from [0x02] "EEEEEEEEEEEEEEEE"
// ...
// - Repetition of 0x10 bytes from [0x0F] "EEEEEEEEEEEEEEEE"
// - Repetition of 0x1C bytes from [0x10] "EEEEEEEEEEEEEEEEQQQQQQQQQQQQ"
// The last repetition is the best one.
//
pWork->offs09BC[0] = 0xFFFF;
pWork->offs09BC[1] = 0x0000;
di_val = 0;
// Note: I failed to figure out what does the table "offs09BC" mean.
// If anyone has an idea, let me know to zezula_at_volny_dot_cz
for(offs_in_rep = 1; offs_in_rep < rep_length; )
{
if(input_data[offs_in_rep] != input_data[di_val])
{
di_val = pWork->offs09BC[di_val];
if(di_val != 0xFFFF)
continue;
}
pWork->offs09BC[++offs_in_rep] = ++di_val;
}
//
// Now go through all the repetitions from the first found one
// to the current input data, and check if any of them migh be
// a start of a greater sequence match.
//
prev_repetition = pWork->work_buff + phash_offs[0];
prev_rep_end = prev_repetition + rep_length;
rep_length2 = rep_length;
for(;;)
{
rep_length2 = pWork->offs09BC[rep_length2];
if(rep_length2 == 0xFFFF)
rep_length2 = 0;
// Get the pointer to the previous repetition
phash_offs = pWork->phash_offs + phash_offs_index;
// Skip those repetitions that don't reach the end
// of the first found repetition
do
{
phash_offs++;
phash_offs_index++;
prev_repetition = pWork->work_buff + *phash_offs;
if(prev_repetition >= repetition_limit)
return rep_length;
}
while(prev_repetition + rep_length2 < prev_rep_end);
// Verify if the last but one byte from the repetition matches
// the last but one byte from the input data.
// If not, find a next repetition
pre_last_byte = input_data[rep_length - 2];
if(pre_last_byte == prev_repetition[rep_length - 2])
{
// If the new repetition reaches beyond the end
// of previously found repetition, reset the repetition length to zero.
if(prev_repetition + rep_length2 != prev_rep_end)
{
prev_rep_end = prev_repetition;
rep_length2 = 0;
}
}
else
{
phash_offs = pWork->phash_offs + phash_offs_index;
do
{
phash_offs++;
phash_offs_index++;
prev_repetition = pWork->work_buff + *phash_offs;
if(prev_repetition >= repetition_limit)
return rep_length;
}
while(prev_repetition[rep_length - 2] != pre_last_byte || prev_repetition[0] != input_data[0]);
// Reset the length of the repetition to 2 bytes only
prev_rep_end = prev_repetition + 2;
rep_length2 = 2;
}
// Find out how many more characters are equal to the first repetition.
while(*prev_rep_end == input_data[rep_length2])
{
if(++rep_length2 >= 0x204)
break;
prev_rep_end++;
}
// Is the newly found repetion at least as long as the previous one ?
if(rep_length2 >= rep_length)
{
// Calculate the distance of the new repetition
pWork->distance = (unsigned int)(input_data - prev_repetition - 1);
if((rep_length = rep_length2) == 0x204)
return rep_length;
// Update the additional elements in the "offs09BC" table
// to reflect new rep length
while(offs_in_rep < rep_length2)
{
if(input_data[offs_in_rep] != input_data[di_val])
{
di_val = pWork->offs09BC[di_val];
if(di_val != 0xFFFF)
continue;
}
pWork->offs09BC[++offs_in_rep] = ++di_val;
}
}
}
}
static void WriteCmpData(TCmpStruct * pWork)
{
unsigned char * input_data_end; // Pointer to the end of the input data
unsigned char * input_data = pWork->work_buff + pWork->dsize_bytes + 0x204;
unsigned int input_data_ended = 0; // If 1, then all data from the input stream have been already loaded
unsigned int save_rep_length; // Saved length of current repetition
unsigned int save_distance = 0; // Saved distance of current repetition
unsigned int rep_length; // Length of the found repetition
unsigned int phase = 0; //
// Store the compression type and dictionary size
pWork->out_buff[0] = (char)pWork->ctype;
pWork->out_buff[1] = (char)pWork->dsize_bits;
pWork->out_bytes = 2;
// Reset output buffer to zero
memset(&pWork->out_buff[2], 0, sizeof(pWork->out_buff) - 2);
pWork->out_bits = 0;
while(input_data_ended == 0)
{
unsigned int bytes_to_load = 0x1000;
int total_loaded = 0;
int bytes_loaded;
// Load the bytes from the input stream, up to 0x1000 bytes
while(bytes_to_load != 0)
{
bytes_loaded = pWork->read_buf((char *)pWork->work_buff + pWork->dsize_bytes + 0x204 + total_loaded,
&bytes_to_load,
pWork->param);
if(bytes_loaded == 0)
{
if(total_loaded == 0 && phase == 0)
goto __Exit;
input_data_ended = 1;
break;
}
else
{
bytes_to_load -= bytes_loaded;
total_loaded += bytes_loaded;
}
}
input_data_end = pWork->work_buff + pWork->dsize_bytes + total_loaded;
if(input_data_ended)
input_data_end += 0x204;
//
// Warning: The end of the buffer passed to "SortBuffer" is actually 2 bytes beyond
// valid data. It is questionable if this is actually a bug or not,
// but it might cause the compressed data output to be dependent on random bytes
// that are in the buffer.
// To prevent that, the calling application must always zero the compression
// buffer before passing it to "implode"
//
// Search the PAIR_HASHes of the loaded blocks. Also, include
// previously compressed data, if any.
switch(phase)
{
case 0:
SortBuffer(pWork, input_data, input_data_end + 1);
phase++;
if(pWork->dsize_bytes != 0x1000)
phase++;
break;
case 1:
SortBuffer(pWork, input_data - pWork->dsize_bytes + 0x204, input_data_end + 1);
phase++;
break;
default:
SortBuffer(pWork, input_data - pWork->dsize_bytes, input_data_end + 1);
break;
}
// Perform the compression of the current block
while(input_data < input_data_end)
{
// Find if the current byte sequence wasn't there before.
rep_length = FindRep(pWork, input_data);
while(rep_length != 0)
{
// If we found repetition of 2 bytes, that is 0x100 or fuhrter back,
// don't bother. Storing the distance of 0x100 bytes would actually
// take more space than storing the 2 bytes as-is.
if(rep_length == 2 && pWork->distance >= 0x100)
break;
// When we are at the end of the input data, we cannot allow
// the repetition to go past the end of the input data.
if(input_data_ended && input_data + rep_length > input_data_end)
{
// Shorten the repetition length so that it only covers valid data
rep_length = (unsigned long)(input_data_end - input_data);
if(rep_length < 2)
break;
// If we got repetition of 2 bytes, that is 0x100 or more backward, don't bother
if(rep_length == 2 && pWork->distance >= 0x100)
break;
goto __FlushRepetition;
}
if(rep_length >= 8 || input_data + 1 >= input_data_end)
goto __FlushRepetition;
// Try to find better repetition 1 byte later.
// Example: "ARROCKFORT" "AROCKFORT"
// When "input_data" points to the second string, FindRep
// returns the occurence of "AR". But there is longer repetition "ROCKFORT",
// beginning 1 byte after.
save_rep_length = rep_length;
save_distance = pWork->distance;
rep_length = FindRep(pWork, input_data + 1);
// Only use the new repetition if it's length is greater than the previous one
if(rep_length > save_rep_length)
{
// If the new repetition if only 1 byte better
// and the previous distance is less than 0x80 bytes, use the previous repetition
if(rep_length > save_rep_length + 1 || save_distance > 0x80)
{
// Flush one byte, so that input_data will point to the secondary repetition
OutputBits(pWork, pWork->nChBits[*input_data], pWork->nChCodes[*input_data]);
input_data++;
continue;
}
}
// Revert to the previous repetition
rep_length = save_rep_length;
pWork->distance = save_distance;
__FlushRepetition:
OutputBits(pWork, pWork->nChBits[rep_length + 0xFE], pWork->nChCodes[rep_length + 0xFE]);
if(rep_length == 2)
{
OutputBits(pWork, pWork->dist_bits[pWork->distance >> 2],
pWork->dist_codes[pWork->distance >> 2]);
OutputBits(pWork, 2, pWork->distance & 3);
}
else
{
OutputBits(pWork, pWork->dist_bits[pWork->distance >> pWork->dsize_bits],
pWork->dist_codes[pWork->distance >> pWork->dsize_bits]);
OutputBits(pWork, pWork->dsize_bits, pWork->dsize_mask & pWork->distance);
}
// Move the begin of the input data by the length of the repetition
input_data += rep_length;
goto _00402252;
}
// If there was no previous repetition for the current position in the input data,
// just output the 9-bit literal for the one character
OutputBits(pWork, pWork->nChBits[*input_data], pWork->nChCodes[*input_data]);
input_data++;
_00402252:;
}
if(input_data_ended == 0)
{
input_data -= 0x1000;
memmove(pWork->work_buff, pWork->work_buff + 0x1000, pWork->dsize_bytes + 0x204);
}
}
__Exit:
// Write the termination literal
OutputBits(pWork, pWork->nChBits[0x305], pWork->nChCodes[0x305]);
if(pWork->out_bits != 0)
pWork->out_bytes++;
pWork->write_buf(pWork->out_buff, &pWork->out_bytes, pWork->param);
return;
}
//-----------------------------------------------------------------------------
// Main imploding function
unsigned int PKEXPORT implode(
unsigned int (*read_buf)(char *buf, unsigned int *size, void *param),
void (*write_buf)(char *buf, unsigned int *size, void *param),
char *work_buf,
void *param,
unsigned int *type,
unsigned int *dsize)
{
TCmpStruct * pWork = (TCmpStruct *)work_buf;
unsigned int nChCode;
unsigned int nCount;
unsigned int i;
int nCount2;
// Fill the work buffer information
// Note: The caller must zero the "work_buff" before passing it to implode
pWork->read_buf = read_buf;
pWork->write_buf = write_buf;
pWork->dsize_bytes = *dsize;
pWork->ctype = *type;
pWork->param = param;
pWork->dsize_bits = 4;
pWork->dsize_mask = 0x0F;
// Test dictionary size
switch(*dsize)
{
case CMP_IMPLODE_DICT_SIZE3: // 0x1000 bytes
pWork->dsize_bits++;
pWork->dsize_mask |= 0x20;
// No break here !!!
case CMP_IMPLODE_DICT_SIZE2: // 0x800 bytes
pWork->dsize_bits++;
pWork->dsize_mask |= 0x10;
// No break here !!!
case CMP_IMPLODE_DICT_SIZE1: // 0x400
break;
default:
return CMP_INVALID_DICTSIZE;
}
// Test the compression type
switch(*type)
{
case CMP_BINARY: // We will compress data with binary compression type
for(nChCode = 0, nCount = 0; nCount < 0x100; nCount++)
{
pWork->nChBits[nCount] = 9;
pWork->nChCodes[nCount] = (unsigned short)nChCode;
nChCode = (nChCode & 0x0000FFFF) + 2;
}
break;
case CMP_ASCII: // We will compress data with ASCII compression type
for(nCount = 0; nCount < 0x100; nCount++)
{
pWork->nChBits[nCount] = (unsigned char )(ChBitsAsc[nCount] + 1);
pWork->nChCodes[nCount] = (unsigned short)(ChCodeAsc[nCount] * 2);
}
break;
default:
return CMP_INVALID_MODE;
}
for(i = 0; i < 0x10; i++)
{
for(nCount2 = 0; nCount2 < (1 << ExLenBits[i]); nCount2++)
{
pWork->nChBits[nCount] = (unsigned char)(ExLenBits[i] + LenBits[i] + 1);
pWork->nChCodes[nCount] = (unsigned short)((nCount2 << (LenBits[i] + 1)) | ((LenCode[i] & 0xFFFF00FF) * 2) | 1);
nCount++;
}
}
// Copy the distance codes and distance bits and perform the compression
memcpy(&pWork->dist_codes, DistCode, sizeof(DistCode));
memcpy(&pWork->dist_bits, DistBits, sizeof(DistBits));
WriteCmpData(pWork);
return CMP_NO_ERROR;
}