DaemonBite-Retro-Controller.../PaddleTwoControllersUSB/PaddleTwoControllersUSB.ino

256 lines
7.1 KiB
C++

/*
* A2600 Paddles/Spinners USB Adapter
* (C) Alexey Melnikov
*
* Based on project by Mikael Norrgård <mick@daemonbite.com>
*
* GNU GENERAL PUBLIC LICENSE
* Version 3, 29 June 2007
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
// PADDLE:
// Paddles need a modification: connect unused 3rd pin on potentiometer (make sure it's not connected to middle pin!)
// to the ground (black wire on button).
// SPINNER:
// Any spinner should work. Original A2600 driving controller has very low resolution, so it's better to upgrade it with some 3rd party spinner
// component with at least 80 ppr. Spinner components with clicking mechanism is not recommended as it won't be smooth.
// Controller DB9 pins (looking face-on to the end of the plug):
//
// 5 4 3 2 1
// 9 8 7 6
//
// Joystick Port 1
// DB9 Arduino Pro Micro Paddle x2 Driving x1
// ---------------------------------------------------
// 1 TXO(1) PD3 EncA
// 2 RXI(0) PD2 EncB
// 3 3 PD0 button 1
// 4 4 PD4 button 0
// 5 A0 PF7 paddle 0
// 6 6 PD7 button
// 7 VCC VCC VCC
// 8 GND GND GND
// 9 A1 PF6 paddle 1
//
// Joystick Port 2
// DB9 Arduino Pro Micro Driving x1
// ---------------------------------------------------
// 1 2 PD1 EncA
// 2 7 PE6 EncB
// 3
// 4
// 5
// 6 15 PB1 button
// 7 VCC VCC
// 8 GND GND
// 9
//
//
// Note: spinners pins must support interrupts!
//
///////////////// Customizable settings /////////////////////////
//uncomment following line for Beetle board pin mapping.
//#define BEETLE
// Spinner pulses per revolution
// For arduino shield spinner: 20
#define SPINNER_PPR 20
// Comment it to dosable paddle emulation by spinner
#define PADDLE_EMU
// Optional parameter. Leave it commented out.
//#define SPINNER_SENSITIVITY 1
// Set it to 1 if you want only single input device.
#define DEV_NUM 2
/////////////////////////////////////////////////////////////////
// pins map
#ifdef BEETLE
const int8_t encpin[2][2] = {{1,0},{3,2}}; // rotary encoder
const int8_t dbtnpin[2] = {9,15}; // driving controller button
const int8_t pbtnpin[2] = {11,10}; // paddle button
const int8_t pdlpin[2] = {A0,A1}; // paddle pot
#else
const int8_t encpin[2][2] = {{1,0},{2,7}}; // rotary encoder
const int8_t dbtnpin[2] = {6,15}; // driving controller button
const int8_t pbtnpin[2] = {4,3}; // paddle button
const int8_t pdlpin[2] = {A0,A1}; // paddle pot
#endif
////////////////////////////////////////////////////////
#ifndef SPINNER_SENSITIVITY
#if SPINNER_PPR < 50
#define SPINNER_SENSITIVITY 1
#else
#define SPINNER_SENSITIVITY 2
#endif
#endif
// ID for special support in MiSTer
const char *gp_serial = "MiSTer PD/SP v1";
#include <ResponsiveAnalogRead.h>
#include "Gamepad.h"
Gamepad_ Gamepad[DEV_NUM];
ResponsiveAnalogRead analog[2] = {ResponsiveAnalogRead(pdlpin[0], true),ResponsiveAnalogRead(pdlpin[1], true)};
int8_t pdlena[2] = {0,0};
uint16_t drvpos[2];
int16_t drvX[2] = {0,0};
#define SP_MAX ((SPINNER_PPR*4*270UL)/360)
const uint16_t sp_max = SP_MAX;
int32_t sp_clamp[2] = {SP_MAX/2,SP_MAX/2};
void drv_proc(int8_t idx)
{
static int8_t prev[2];
int8_t a = digitalRead(encpin[idx][0]);
int8_t b = digitalRead(encpin[idx][1]);
int8_t spval = (b << 1) | (b^a);
int8_t diff = (prev[idx] - spval)&3;
if(diff == 3)
{
drvpos[idx] += 10;
if(sp_clamp[idx] < sp_max) sp_clamp[idx]++;
}
if(diff == 1)
{
drvpos[idx] -= 10;
if(sp_clamp[idx] > 0) sp_clamp[idx]--;
}
prev[idx] = spval;
}
void drv0_isr()
{
drv_proc(0);
}
void drv1_isr()
{
drv_proc(1);
}
void setup()
{
float snap = .01;
float thresh = 8.0;
for(int idx=0; idx<DEV_NUM; idx++)
{
Gamepad[idx].reset();
pinMode(encpin[idx][0], INPUT_PULLUP);
pinMode(encpin[idx][1], INPUT_PULLUP);
pinMode(dbtnpin[idx], INPUT_PULLUP);
drv_proc(idx);
drvpos[idx] = 0;
attachInterrupt(digitalPinToInterrupt(encpin[idx][0]), idx ? drv1_isr : drv0_isr, CHANGE);
attachInterrupt(digitalPinToInterrupt(encpin[idx][1]), idx ? drv1_isr : drv0_isr, CHANGE);
pdlena[idx] = 0;
pinMode(pbtnpin[idx], INPUT_PULLUP);
pinMode(pdlpin[idx], INPUT);
analog[idx].setSnapMultiplier(snap);
analog[idx].setActivityThreshold(thresh);
}
}
const int16_t sp_step = (SPINNER_PPR*10)/(20*SPINNER_SENSITIVITY);
void loop()
{
// LEDs off
TXLED1; //RXLED1;
for(int idx=0; idx<DEV_NUM; idx++)
{
analog[idx].update();
// paddle
int8_t newA = !digitalRead(pbtnpin[idx]);
//int8_t newB = 0; // reserved for paddles mixed in a single USB controller.
int8_t newX = 0;
int8_t newY = 0;
// spinner
int8_t newC = !digitalRead(dbtnpin[idx]);
int8_t newR = 0;
int8_t newL = 0;
if(newA) pdlena[idx] = 1;
if(newC) pdlena[idx] = 0;
if(pdlena[idx])
{
newX = (analog[idx].getValue()>>2);
}
else
{
#ifdef PADDLE_EMU
newX = ((sp_clamp[idx]*255)/sp_max);
#endif
}
if(!Gamepad[idx]._GamepadReport.b3 && !Gamepad[idx]._GamepadReport.b4)
{
static uint16_t prev[2] = {0,0};
int16_t diff = drvpos[idx] - prev[idx];
if(diff >= sp_step)
{
newR = 1;
prev[idx] += sp_step;
}
else if(diff <= -sp_step)
{
newL = 1;
prev[idx] -= sp_step;
}
}
int8_t diff = newX - Gamepad[idx]._GamepadReport.X;
// Only report controller state if it has changed
if (diff
|| ((Gamepad[idx]._GamepadReport.b0 ^ newA) & 1)
|| ((Gamepad[idx]._GamepadReport.b2 ^ newC) & 1)
|| ((Gamepad[idx]._GamepadReport.b3 ^ newL) & 1)
|| ((Gamepad[idx]._GamepadReport.b4 ^ newR) & 1))
{
Gamepad[idx]._GamepadReport.X = newX;
Gamepad[idx]._GamepadReport.b0 = newA;
Gamepad[idx]._GamepadReport.b2 = newC;
Gamepad[idx]._GamepadReport.b3 = newL;
Gamepad[idx]._GamepadReport.b4 = newR;
Gamepad[idx].send();
}
}
}