/* DaemonBite NES Controllers to USB Adapter * Author: Mikael Norrgård * * Copyright (c) 2020 Mikael Norrgård * * GNU GENERAL PUBLIC LICENSE * Version 3, 29 June 2007 * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #include "Gamepad.h" // ATT: 20 chars max (including NULL at the end) according to Arduino source code. // Additionally serial number is used to differentiate arduino projects to have different button maps! const char *gp_serial = "NES to USB"; //#define DEBUG #define GAMEPAD_COUNT 2 // NOTE: No more than TWO gamepads are possible at the moment due to a USB HID issue. #define GAMEPAD_COUNT_MAX 4 // NOTE: For some reason, can't have more than two gamepads without serial breaking. Can someone figure out why? // (It has something to do with how Arduino handles HID devices) #define BUTTON_COUNT 8 // Standard NES controller has four buttons and four axes, totalling 8 #define BUTTON_READ_DELAY 20 // Delay between button reads in µs #define MICROS_LATCH 8 // 12µs according to specs (8 seems to work fine) #define MICROS_CLOCK 4 // 6µs according to specs (4 seems to work fine) #define MICROS_PAUSE 4 // 6µs according to specs (4 seems to work fine) #define UP 0x01 #define DOWN 0x02 #define LEFT 0x04 #define RIGHT 0x08 // Wire it all up according to the following table: // // NES SNES Arduino Pro Micro // -------------------------------------- // VCC VCC (All gamepads) // GND GND (All gamepads) // OUT0 (LATCH) 2 (PD1, All gamepads) // CUP (CLOCK) 3 (PD0, All gamepads) // D1 (GP1: DATA) A0 (PF7, Gamepad 1) // D1 (GP2: DATA) A1 (PF6, Gamepad 2) // D1 (GP3: DATA) A2 (PF5, Gamepad 3, not currently used) // D1 (GP4: DATA) A3 (PF4, Gamepad 4, not currently used) // Set up USB HID gamepads Gamepad_ Gamepad[GAMEPAD_COUNT]; // Controllers uint8_t buttons[GAMEPAD_COUNT_MAX] = {0,0,0,0}; uint8_t buttonsPrev[GAMEPAD_COUNT_MAX] = {0,0,0,0}; uint8_t gpBit[GAMEPAD_COUNT_MAX] = {B10000000,B01000000,B00100000,B00010000}; uint8_t btnBits[BUTTON_COUNT] = {0x20,0x10,0x40,0x80,UP,DOWN,LEFT,RIGHT}; uint8_t gp = 0; // Timing uint32_t microsButtons = 0; #ifdef DEBUG uint32_t microsStart = 0; uint32_t microsEnd = 0; uint8_t counter = 0; #endif void setup() { // Setup latch and clock pins (2,3 or PD1, PD0) DDRD |= B00000011; // output PORTD &= ~B00000011; // low // Setup data pins (A0-A3 or PF7-PF4) DDRF &= ~B11110000; // inputs PORTF |= B11110000; // enable internal pull-ups #ifdef DEBUG Serial.begin(115200); delay(2000); #endif // Short delay to let controllers stabilize delay(50); } void loop() { while(1) { // See if enough time has passed since last button read if((micros() - microsButtons) > BUTTON_READ_DELAY) { #ifdef DEBUG microsStart = micros(); #endif // Pulse latch sendLatch(); for(uint8_t btn=0; btn> 4); // First 4 bits are the axes Gamepad[gp]._GamepadReport.Y = ((buttons[gp] & DOWN) >> 1) - (buttons[gp] & UP); Gamepad[gp]._GamepadReport.X = ((buttons[gp] & RIGHT) >> 3) - ((buttons[gp] & LEFT) >> 2); buttonsPrev[gp] = buttons[gp]; Gamepad[gp].send(); } } microsButtons = micros(); #ifdef DEBUG microsEnd = micros(); if(counter < 20) { Serial.println(microsEnd-microsStart); counter++; } #endif } }} void sendLatch() { // Send a latch pulse to the NES controller(s) PORTD |= B00000010; // Set HIGH delayMicroseconds(MICROS_LATCH); PORTD &= ~B00000010; // Set LOW delayMicroseconds(MICROS_PAUSE); } void sendClock() { // Send a clock pulse to the NES controller(s) PORTD |= B10000001; // Set HIGH delayMicroseconds(MICROS_CLOCK); PORTD &= ~B10000001; // Set LOW delayMicroseconds(MICROS_PAUSE); }