1
0
mirror of https://github.com/MickGyver/DaemonBite-Retro-Controllers-USB synced 2024-11-15 22:05:03 -05:00

Separate SNES NTT version, debug code added to NES adapter code.

This commit is contained in:
MickGyver 2021-04-28 15:00:19 +03:00
parent 43c6005923
commit a7aa8ba7ba
13 changed files with 568 additions and 51 deletions

2
.gitignore vendored
View File

@ -1,3 +1,5 @@
# Ignore VS Code folders
.vscode
.build
# Ignore HEX files
*.hex

View File

@ -27,6 +27,8 @@
// Additionally serial number is used to differentiate arduino projects to have different button maps!
const char *gp_serial = "NES to USB";
//#define DEBUG
#define GAMEPAD_COUNT 2 // NOTE: No more than TWO gamepads are possible at the moment due to a USB HID issue.
#define GAMEPAD_COUNT_MAX 4 // NOTE: For some reason, can't have more than two gamepads without serial breaking. Can someone figure out why?
// (It has something to do with how Arduino handles HID devices)
@ -67,6 +69,12 @@ uint8_t gp = 0;
// Timing
uint32_t microsButtons = 0;
#ifdef DEBUG
uint32_t microsStart = 0;
uint32_t microsEnd = 0;
uint8_t counter = 0;
#endif
void setup()
{
// Setup latch and clock pins (2,3 or PD1, PD0)
@ -77,7 +85,13 @@ void setup()
DDRF &= ~B11110000; // inputs
PORTF |= B11110000; // enable internal pull-ups
delay(500);
#ifdef DEBUG
Serial.begin(115200);
delay(2000);
#endif
// Short delay to let controllers stabilize
delay(50);
}
void loop() { while(1)
@ -85,6 +99,10 @@ void loop() { while(1)
// See if enough time has passed since last button read
if((micros() - microsButtons) > BUTTON_READ_DELAY)
{
#ifdef DEBUG
microsStart = micros();
#endif
// Pulse latch
sendLatch();
@ -109,6 +127,14 @@ void loop() { while(1)
}
microsButtons = micros();
#ifdef DEBUG
microsEnd = micros();
if(counter < 20) {
Serial.println(microsEnd-microsStart);
counter++;
}
#endif
}
}}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 267 KiB

After

Width:  |  Height:  |  Size: 275 KiB

View File

@ -23,7 +23,7 @@
#include "Gamepad.h"
#define DEBOUNCE 0 // 1=Diddly-squat-Delay-Debouncing™ activated, 0=Debounce deactivated
#define DEBOUNCE 1 // 1=Diddly-squat-Delay-Debouncing™ activated, 0=Debounce deactivated
#define DEBOUNCE_TIME 10 // Debounce time in milliseconds
//#define DEBUG // Enables debugging (sends debug data to usb serial)

View File

@ -33,10 +33,10 @@ static const uint8_t _hidReportDescriptor[] PROGMEM = {
0x05, 0x09, // USAGE_PAGE (Button)
0x19, 0x01, // USAGE_MINIMUM (Button 1)
0x29, 0x18, // USAGE_MAXIMUM (Button 24)
0x29, 0x08, // USAGE_MAXIMUM (Button 8)
0x15, 0x00, // LOGICAL_MINIMUM (0)
0x25, 0x01, // LOGICAL_MAXIMUM (1)
0x95, 0x18, // REPORT_COUNT (24)
0x95, 0x08, // REPORT_COUNT (8)
0x75, 0x01, // REPORT_SIZE (1)
0x81, 0x02, // INPUT (Data,Var,Abs)

View File

@ -31,7 +31,7 @@
extern const char* gp_serial;
typedef struct {
uint32_t buttons : 24;
uint8_t buttons;
int8_t X;
int8_t Y;
} GamepadReport;

View File

@ -27,20 +27,21 @@
// Additionally serial number is used to differentiate arduino projects to have different button maps!
const char *gp_serial = "NES/SNES to USB";
#define GAMEPAD_COUNT 2 // NOTE: No more than TWO gamepads are possible at the moment due to a USB HID issue.
#define GAMEPAD_COUNT_MAX 4 // NOTE: For some reason, can't have more than two gamepads without serial breaking. Can someone figure out why?
// (It has something to do with how Arduino handles HID devices)
#define DEBUG
#define GAMEPAD_COUNT 2 // NOTE: To have more than 2 two gamepads you need to disable the CDC of the Arduino, there is a specific project for that.
#define GAMEPAD_COUNT_MAX 2
#define BUTTON_READ_DELAY 20 // Delay between button reads in µs
#define MICROS_LATCH 10 // 12µs according to specs (8 seems to work fine)
#define MICROS_CLOCK 5 // 6µs according to specs (4 seems to work fine)
#define MICROS_PAUSE 5 // 6µs according to specs (4 seems to work fine)
#define CYCLES_LATCH 128 // 12µs according to specs (8 seems to work fine) (1 cycle @ 16MHz takes 62.5ns so 62.5ns * 128 = 8000ns = 8µs)
#define CYCLES_CLOCK 64 // 6µs according to specs (4 seems to work fine)
#define CYCLES_PAUSE 64 // 6µs according to specs (4 seems to work fine)
#define UP 0x01
#define DOWN 0x02
#define LEFT 0x04
#define RIGHT 0x08
#define NTT_CONTROL_BIT 0x20000000
#define DELAY_CYCLES(n) __builtin_avr_delay_cycles(n)
// Wire it all up according to the following table:
//
@ -58,39 +59,49 @@ const char *gp_serial = "NES/SNES to USB";
enum ControllerType {
NONE,
NES,
SNES,
NTT
SNES
};
// Set up USB HID gamepads
Gamepad_ Gamepad[GAMEPAD_COUNT];
// Controllers
uint32_t buttons[GAMEPAD_COUNT_MAX] = {0,0,0,0};
uint32_t buttonsPrev[GAMEPAD_COUNT_MAX] = {0,0,0,0};
uint8_t gpBit[GAMEPAD_COUNT_MAX] = {B10000000,B01000000,B00100000,B00010000};
uint8_t buttons[GAMEPAD_COUNT_MAX][2] = {{0,0},{0,0}};
uint8_t buttonsPrev[GAMEPAD_COUNT_MAX][2] = {{0,0},{0,0}};
uint8_t gpBit[GAMEPAD_COUNT_MAX] = {B10000000,B01000000};
ControllerType controllerType[GAMEPAD_COUNT_MAX] = {NONE,NONE};
uint32_t btnBits[32] = {0x10,0x40,0x400,0x800,UP,DOWN,LEFT,RIGHT,0x20,0x80,0x100,0x200, // Standard SNES controller
0x10000000,0x20000000,0x40000000,0x80000000,0x1000,0x2000,0x4000,0x8000, // NTT Data Keypad (NDK10)
0x10000,0x20000,0x40000,0x80000,0x100000,0x200000,0x400000,0x800000,
0x1000000,0x2000000,0x4000000,0x8000000};
uint8_t btnByte[12] = {0,0,0,0,1,1,1,1,0,0,0,0};
uint8_t btnBits[12] = {0x01,0x04,0x40,0x80,UP,DOWN,LEFT,RIGHT,0x02,0x08,0x10,0x20};
uint8_t gp = 0;
uint8_t buttonCount = 32;
uint8_t buttonCount = 12;
// Timing
uint32_t microsButtons = 0;
#ifdef DEBUG
uint32_t microsStart = 0;
uint32_t microsEnd = 0;
uint8_t counter = 0;
#endif
void setup()
{
// Setup latch and clock pins (2,3 or PD1, PD0)
DDRD |= B00000011; // output
PORTD &= ~B00000011; // low
// Setup data pins (A0-A3 or PF7-PF4)
// Setup data pins A0-A3 (PF7-PF4)
DDRF &= ~B11110000; // inputs
PORTF |= B11110000; // enable internal pull-ups
DDRC &= ~B01000000; // input
PORTC |= B01000000; // enable internal pull-up
delay(500);
#ifdef DEBUG
Serial.begin(115200);
delay(2000);
#endif
delay(3000);
detectControllerTypes();
}
@ -99,13 +110,18 @@ void loop() { while(1)
// See if enough time has passed since last button read
if((micros() - microsButtons) > BUTTON_READ_DELAY)
{
#ifdef DEBUG
microsStart = micros();
#endif
// Pulse latch
sendLatch();
for(uint8_t btn=0; btn<buttonCount; btn++)
{
for(gp=0; gp<GAMEPAD_COUNT; gp++)
(PINF & gpBit[gp]) ? buttons[gp] &= ~btnBits[btn] : buttons[gp] |= btnBits[btn];
(PINF & gpBit[gp]) ? buttons[gp][btnByte[btn]] &= ~btnBits[btn] : buttons[gp][btnByte[btn]] |= btnBits[btn];
sendClock();
}
@ -113,14 +129,10 @@ void loop() { while(1)
for(gp=0; gp<GAMEPAD_COUNT; gp++)
{
if(controllerType[gp] == NES) { // NES
bitWrite(buttons[gp], 5, bitRead(buttons[gp], 4));
bitWrite(buttons[gp], 4, bitRead(buttons[gp], 6));
buttons[gp] &= 0xC3F;
bitWrite(buttons[gp][0], 1, bitRead(buttons[gp][0], 0));
bitWrite(buttons[gp][0], 0, bitRead(buttons[gp][0], 2));
buttons[gp][0] &= 0xC3;
}
else if(controllerType[gp] == NTT) // SNES NTT Data Keypad
buttons[gp] &= 0x3FFFFFF;
else // SNES Gamepad
buttons[gp] &= 0xFFF;
}
for(gp=0; gp<GAMEPAD_COUNT; gp++)
@ -128,15 +140,25 @@ void loop() { while(1)
// Has any buttons changed state?
if (buttons[gp] != buttonsPrev[gp])
{
Gamepad[gp]._GamepadReport.buttons = (buttons[gp] >> 4); // First 4 bits are the axes
Gamepad[gp]._GamepadReport.Y = ((buttons[gp] & DOWN) >> 1) - (buttons[gp] & UP);
Gamepad[gp]._GamepadReport.X = ((buttons[gp] & RIGHT) >> 3) - ((buttons[gp] & LEFT) >> 2);
buttonsPrev[gp] = buttons[gp];
Gamepad[gp]._GamepadReport.buttons = buttons[gp][0];
Gamepad[gp]._GamepadReport.Y = ((buttons[gp][1] & DOWN) >> 1) - (buttons[gp][1] & UP);
Gamepad[gp]._GamepadReport.X = ((buttons[gp][1] & RIGHT) >> 3) - ((buttons[gp][1] & LEFT) >> 2);
buttonsPrev[gp][0] = buttons[gp][0];
buttonsPrev[gp][1] = buttons[gp][1];
Gamepad[gp].send();
}
}
microsButtons = micros();
#ifdef DEBUG
microsEnd = micros();
if(counter < 20) {
Serial.println(microsEnd-microsStart);
counter++;
}
#endif
}
}}
@ -154,26 +176,21 @@ void detectControllerTypes()
for(uint8_t btn=0; btn<buttonCount; btn++)
{
for(gp=0; gp<GAMEPAD_COUNT; gp++)
(PINF & gpBit[gp]) ? buttons[gp] &= ~btnBits[btn] : buttons[gp] |= btnBits[btn];
(PINF & gpBit[gp]) ? buttons[gp][btnByte[btn]] &= ~btnBits[btn] : buttons[gp][btnByte[btn]] |= btnBits[btn];
sendClock();
}
// Check controller types and set buttonCount to max needed
for(gp=0; gp<GAMEPAD_COUNT; gp++)
{
if((buttons[gp] & 0xF3A0) == 0xF3A0) { // NES
if(controllerType[gp] != SNES && controllerType[gp] != NTT)
if((buttons[gp][0] & 0xF3A) == 0xF3A) { // NES
if(controllerType[gp] != SNES)
controllerType[gp] = NES;
if(buttonCountNew < 8)
buttonCountNew = 8;
}
else if(buttons[gp] & NTT_CONTROL_BIT) { // SNES NTT Data Keypad
controllerType[gp] = NTT;
buttonCountNew = 32;
}
else { // SNES Gamepad
if(controllerType[gp] != NTT)
controllerType[gp] = SNES;
else { // SNES Gamepad
controllerType[gp] = SNES;
if(buttonCountNew < 12)
buttonCountNew = 12;
}
@ -188,16 +205,16 @@ void sendLatch()
{
// Send a latch pulse to (S)NES controller(s)
PORTD |= B00000010; // Set HIGH
delayMicroseconds(MICROS_LATCH);
DELAY_CYCLES(CYCLES_LATCH);
PORTD &= ~B00000010; // Set LOW
delayMicroseconds(MICROS_PAUSE);
DELAY_CYCLES(CYCLES_PAUSE);
}
void sendClock()
{
// Send a clock pulse to (S)NES controller(s)
PORTD |= B10000001; // Set HIGH
delayMicroseconds(MICROS_CLOCK);
DELAY_CYCLES(CYCLES_CLOCK);
PORTD &= ~B10000001; // Set LOW
delayMicroseconds(MICROS_PAUSE);
DELAY_CYCLES(CYCLES_PAUSE);
}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 267 KiB

After

Width:  |  Height:  |  Size: 275 KiB

View File

@ -0,0 +1,152 @@
/* Gamepad.cpp
*
* Based on the advanced HID library for Arduino:
* https://github.com/NicoHood/HID
* Copyright (c) 2014-2015 NicoHood
*
* Copyright (c) 2020 Mikael Norrgård <http://daemonbite.com>
*
* GNU GENERAL PUBLIC LICENSE
* Version 3, 29 June 2007
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "Gamepad.h"
static const uint8_t _hidReportDescriptor[] PROGMEM = {
0x05, 0x01, // USAGE_PAGE (Generic Desktop)
0x09, 0x04, // USAGE (Joystick) (Maybe change to gamepad? I don't think so but...)
0xa1, 0x01, // COLLECTION (Application)
0xa1, 0x00, // COLLECTION (Physical)
0x05, 0x09, // USAGE_PAGE (Button)
0x19, 0x01, // USAGE_MINIMUM (Button 1)
0x29, 0x18, // USAGE_MAXIMUM (Button 24)
0x15, 0x00, // LOGICAL_MINIMUM (0)
0x25, 0x01, // LOGICAL_MAXIMUM (1)
0x95, 0x18, // REPORT_COUNT (24)
0x75, 0x01, // REPORT_SIZE (1)
0x81, 0x02, // INPUT (Data,Var,Abs)
0x05, 0x01, // USAGE_PAGE (Generic Desktop)
0x09, 0x01, // USAGE (pointer)
0xa1, 0x00, // COLLECTION (Physical)
0x09, 0x30, // USAGE (X)
0x09, 0x31, // USAGE (Y)
0x15, 0xff, // LOGICAL_MINIMUM (-1)
0x25, 0x01, // LOGICAL_MAXIMUM (1)
0x95, 0x02, // REPORT_COUNT (2)
0x75, 0x08, // REPORT_SIZE (8)
0x81, 0x02, // INPUT (Data,Var,Abs)
0xc0, // END_COLLECTION
0xc0, // END_COLLECTION
0xc0, // END_COLLECTION
};
Gamepad_::Gamepad_(void) : PluggableUSBModule(1, 1, epType), protocol(HID_REPORT_PROTOCOL), idle(1)
{
epType[0] = EP_TYPE_INTERRUPT_IN;
PluggableUSB().plug(this);
}
int Gamepad_::getInterface(uint8_t* interfaceCount)
{
*interfaceCount += 1; // uses 1
HIDDescriptor hidInterface = {
D_INTERFACE(pluggedInterface, 1, USB_DEVICE_CLASS_HUMAN_INTERFACE, HID_SUBCLASS_NONE, HID_PROTOCOL_NONE),
D_HIDREPORT(sizeof(_hidReportDescriptor)),
D_ENDPOINT(USB_ENDPOINT_IN(pluggedEndpoint), USB_ENDPOINT_TYPE_INTERRUPT, USB_EP_SIZE, 0x01)
};
return USB_SendControl(0, &hidInterface, sizeof(hidInterface));
}
int Gamepad_::getDescriptor(USBSetup& setup)
{
// Check if this is a HID Class Descriptor request
if (setup.bmRequestType != REQUEST_DEVICETOHOST_STANDARD_INTERFACE) { return 0; }
if (setup.wValueH != HID_REPORT_DESCRIPTOR_TYPE) { return 0; }
// In a HID Class Descriptor wIndex cointains the interface number
if (setup.wIndex != pluggedInterface) { return 0; }
// Reset the protocol on reenumeration. Normally the host should not assume the state of the protocol
// due to the USB specs, but Windows and Linux just assumes its in report mode.
protocol = HID_REPORT_PROTOCOL;
return USB_SendControl(TRANSFER_PGM, _hidReportDescriptor, sizeof(_hidReportDescriptor));
}
bool Gamepad_::setup(USBSetup& setup)
{
if (pluggedInterface != setup.wIndex) {
return false;
}
uint8_t request = setup.bRequest;
uint8_t requestType = setup.bmRequestType;
if (requestType == REQUEST_DEVICETOHOST_CLASS_INTERFACE)
{
if (request == HID_GET_REPORT) {
// TODO: HID_GetReport();
return true;
}
if (request == HID_GET_PROTOCOL) {
// TODO: Send8(protocol);
return true;
}
}
if (requestType == REQUEST_HOSTTODEVICE_CLASS_INTERFACE)
{
if (request == HID_SET_PROTOCOL) {
protocol = setup.wValueL;
return true;
}
if (request == HID_SET_IDLE) {
idle = setup.wValueL;
return true;
}
if (request == HID_SET_REPORT)
{
}
}
return false;
}
void Gamepad_::reset()
{
_GamepadReport.X = 0;
_GamepadReport.Y = 0;
_GamepadReport.buttons = 0;
this->send();
}
void Gamepad_::send()
{
USB_Send(pluggedEndpoint | TRANSFER_RELEASE, &_GamepadReport, sizeof(GamepadReport));
}
uint8_t Gamepad_::getShortName(char *name)
{
if(!next)
{
strcpy(name, gp_serial);
return strlen(name);
}
return 0;
}

View File

@ -0,0 +1,60 @@
/* Gamepad.h
*
* Based on the advanced HID library for Arduino:
* https://github.com/NicoHood/HID
* Copyright (c) 2014-2015 NicoHood
*
* Copyright (c) 2020 Mikael Norrgård <http://daemonbite.com>
*
* GNU GENERAL PUBLIC LICENSE
* Version 3, 29 June 2007
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#pragma once
#include "HID.h"
extern const char* gp_serial;
typedef struct {
uint32_t buttons : 24;
int8_t X;
int8_t Y;
} GamepadReport;
class Gamepad_ : public PluggableUSBModule
{
private:
uint8_t reportId;
protected:
int getInterface(uint8_t* interfaceCount);
int getDescriptor(USBSetup& setup);
uint8_t getShortName(char *name);
bool setup(USBSetup& setup);
uint8_t epType[1];
uint8_t protocol;
uint8_t idle;
public:
GamepadReport _GamepadReport;
Gamepad_(void);
void reset(void);
void send();
};

View File

@ -0,0 +1,17 @@
# DaemonBite SNES/NES USB Controller adapter with NTT Datapad support
## Introduction
With this simple to build adapter you can connect SNES and NES gamepads to a PC, Raspberry PI, MiSTer FPGA etc. The Arduino Pro Micro has very low lag when configured as a USB gamepad and it is plug n' play once it has been programmed. The controller type is auto-detected.
The NTT Data Keypad controller for SNES is also supported in this version. For a faster version, use the project in the SNESControllersUSB folder.
## Parts you need
- Arduino Pro Micro (ATMega32U4)
- Male end of SNES or NES controller extension cable
- Heat shrink tube (Ø ~20mm)
- Micro USB cable
## Wiring
![Assemble1](images/snes-usb-adapter-wiring.png)
## License
This project is licensed under the GNU General Public License v3.0.

View File

@ -0,0 +1,243 @@
/* DaemonBite (S)NES Controllers to USB Adapter with NTT Datapad support
* Author: Mikael Norrgård <mick@daemonbite.com>
*
* Copyright (c) 2020 Mikael Norrgård <http://daemonbite.com>
*
* GNU GENERAL PUBLIC LICENSE
* Version 3, 29 June 2007
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "Gamepad.h"
// ATT: 20 chars max (including NULL at the end) according to Arduino source code.
// Additionally serial number is used to differentiate arduino projects to have different button maps!
const char *gp_serial = "NES/SNES to USB";
#define DEBUG
#define GAMEPAD_COUNT 1 // NOTE: To have more than 2 two gamepads you need to disable the CDC of the Arduino.
#define GAMEPAD_COUNT_MAX 4
#define BUTTON_READ_DELAY 20 // Delay between button reads in µs
#define CYCLES_LATCH 128 // 12µs according to specs (8 seems to work fine) (1 cycle @ 16MHz takes 62.5ns so 62.5ns * 128 = 8000ns = 8µs)
#define CYCLES_CLOCK 64 // 6µs according to specs (4 seems to work fine)
#define CYCLES_PAUSE 64 // 6µs according to specs (4 seems to work fine)
#define UP 0x01
#define DOWN 0x02
#define LEFT 0x04
#define RIGHT 0x08
#define NTT_CONTROL_BIT 0x20000000
#define DELAY_CYCLES(n) __builtin_avr_delay_cycles(n)
// Wire it all up according to the following table:
//
// NES SNES Arduino Pro Micro
// --------------------------------------
// VCC VCC (All gamepads)
// GND GND (All gamepads)
// OUT0 (LATCH) 2 (PD1, All gamepads)
// CUP (CLOCK) 3 (PD0, All gamepads)
// D1 (GP1: DATA) A0 (PF7, Gamepad 1)
// D1 (GP2: DATA) A1 (PF6, Gamepad 2)
// D1 (GP3: DATA) A2 (PF5, Gamepad 3, not currently used)
// D1 (GP4: DATA) A3 (PF4, Gamepad 4, not currently used)
enum ControllerType {
NONE,
NES,
SNES,
NTT
};
// Set up USB HID gamepads
Gamepad_ Gamepad[GAMEPAD_COUNT];
// Controllers
uint32_t buttons[GAMEPAD_COUNT_MAX] = {0,0,0,0};
uint32_t buttonsPrev[GAMEPAD_COUNT_MAX] = {0,0,0,0};
uint8_t gpBit[GAMEPAD_COUNT_MAX] = {B10000000,B01000000,B00100000,B00010000};
ControllerType controllerType[GAMEPAD_COUNT_MAX] = {NONE,NONE,NONE,NONE};
uint32_t btnBits[32] = {0x10,0x40,0x400,0x800,UP,DOWN,LEFT,RIGHT,0x20,0x80,0x100,0x200, // Standard SNES controller
0x10000000,0x20000000,0x40000000,0x80000000,0x1000,0x2000,0x4000,0x8000, // NTT Data Keypad (NDK10)
0x10000,0x20000,0x40000,0x80000,0x100000,0x200000,0x400000,0x800000,
0x1000000,0x2000000,0x4000000,0x8000000};
uint8_t gp = 0;
uint8_t buttonCount = 32;
// Timing
uint32_t microsButtons = 0;
#ifdef DEBUG
uint32_t microsStart = 0;
uint32_t microsEnd = 0;
uint8_t counter = 0;
#endif
void setup()
{
// Setup latch and clock pins (2,3 or PD1, PD0)
DDRD |= B00000011; // output
PORTD &= ~B00000011; // low
// Setup data pins A0-A3 (PF7-PF4)
DDRF &= ~B11110000; // inputs
PORTF |= B11110000; // enable internal pull-ups
DDRC &= ~B01000000; // input
PORTC |= B01000000; // enable internal pull-up
#ifdef DEBUG
Serial.begin(115200);
delay(4000);
#endif
delay(500);
detectControllerTypes();
}
void loop() { while(1)
{
// See if enough time has passed since last button read
if((micros() - microsButtons) > BUTTON_READ_DELAY)
{
#ifdef DEBUG
microsStart = micros();
#endif
// Pulse latch
sendLatch();
for(uint8_t btn=0; btn<buttonCount; btn++)
{
for(gp=0; gp<GAMEPAD_COUNT; gp++)
(PINF & gpBit[gp]) ? buttons[gp] &= ~btnBits[btn] : buttons[gp] |= btnBits[btn];
sendClock();
}
// Check gamepad type
for(gp=0; gp<GAMEPAD_COUNT; gp++)
{
if(controllerType[gp] == NES) { // NES
bitWrite(buttons[gp], 5, bitRead(buttons[gp], 4));
bitWrite(buttons[gp], 4, bitRead(buttons[gp], 6));
buttons[gp] &= 0xC3F;
}
else if(controllerType[gp] == NTT) // SNES NTT Data Keypad
buttons[gp] &= 0x3FFFFFF;
else // SNES Gamepad
buttons[gp] &= 0xFFF;
}
for(gp=0; gp<GAMEPAD_COUNT; gp++)
{
// Has any buttons changed state?
if (buttons[gp] != buttonsPrev[gp])
{
Gamepad[gp]._GamepadReport.buttons = (buttons[gp] >> 4); // First 4 bits are the axes
Gamepad[gp]._GamepadReport.Y = ((buttons[gp] & DOWN) >> 1) - (buttons[gp] & UP);
Gamepad[gp]._GamepadReport.X = ((buttons[gp] & RIGHT) >> 3) - ((buttons[gp] & LEFT) >> 2);
buttonsPrev[gp] = buttons[gp];
Gamepad[gp].send();
}
}
microsButtons = micros();
#ifdef DEBUG
microsEnd = micros();
if(counter < 20) {
Serial.println(microsEnd-microsStart);
counter++;
}
#endif
}
}}
void detectControllerTypes()
{
uint8_t buttonCountNew = 0;
// Read the controllers a few times to detect controller type
for(uint8_t i=0; i<4; i++)
{
// Pulse latch
sendLatch();
// Read all buttons
for(uint8_t btn=0; btn<buttonCount; btn++)
{
for(gp=0; gp<GAMEPAD_COUNT; gp++)
(PINF & gpBit[gp]) ? buttons[gp] &= ~btnBits[btn] : buttons[gp] |= btnBits[btn];
sendClock();
}
// Check controller types and set buttonCount to max needed
for(gp=0; gp<GAMEPAD_COUNT; gp++)
{
if((buttons[gp] & 0xF3A0) == 0xF3A0) { // NES
if(controllerType[gp] != SNES && controllerType[gp] != NTT)
controllerType[gp] = NES;
if(buttonCountNew < 8)
buttonCountNew = 8;
}
else if(buttons[gp] & NTT_CONTROL_BIT) { // SNES NTT Data Keypad
controllerType[gp] = NTT;
buttonCountNew = 32;
}
else { // SNES Gamepad
if(controllerType[gp] != NTT)
controllerType[gp] = SNES;
if(buttonCountNew < 12)
buttonCountNew = 12;
}
}
}
#ifdef DEBUG
for(gp=0; gp<GAMEPAD_COUNT; gp++)
{
Serial.print("Controller ");
Serial.print(gp+1);
Serial.print(": ");
Serial.println(buttons[gp]);
}
#endif
// Set updated button count to avoid unneccesary button reads (for simpler controller types)
buttonCount = buttonCountNew;
}
void sendLatch()
{
// Send a latch pulse to (S)NES controller(s)
PORTD |= B00000010; // Set HIGH
DELAY_CYCLES(CYCLES_LATCH);
PORTD &= ~B00000010; // Set LOW
DELAY_CYCLES(CYCLES_PAUSE);
}
void sendClock()
{
// Send a clock pulse to (S)NES controller(s)
PORTD |= B10000001; // Set HIGH
DELAY_CYCLES(CYCLES_CLOCK);
PORTD &= ~B10000001; // Set LOW
DELAY_CYCLES(CYCLES_PAUSE);
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 275 KiB