1
0
mirror of https://github.com/MickGyver/DaemonBite-Retro-Controllers-USB synced 2024-10-31 15:45:07 -04:00
DaemonBite-Retro-Controller.../SNESControllersUSB/SNESControllersUSB.ino

149 lines
5.2 KiB
Arduino
Raw Normal View History

2020-02-14 08:06:29 -05:00
/* DaemonBite (S)NES Controllers to USB Adapter
* Author: Mikael Norrgård <mick@daemonbite.com>
*
* Copyright (c) 2020 Mikael Norrgård <http://daemonbite.com>
*
* GNU GENERAL PUBLIC LICENSE
* Version 3, 29 June 2007
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "Gamepad.h"
// ATT: 20 chars max (including NULL at the end) according to Arduino source code.
// Additionally serial number is used to differentiate arduino projects to have different button maps!
const char *gp_serial = "NES/SNES to USB";
2020-02-14 08:06:29 -05:00
#define GAMEPAD_COUNT 2 // NOTE: No more than TWO gamepads are possible at the moment due to a USB HID issue.
#define GAMEPAD_COUNT_MAX 4 // NOTE: For some reason, can't have more than two gamepads without serial breaking. Can someone figure out why?
// (It has something to do with how Arduino handles HID devices)
#define BUTTON_READ_DELAY 30 // Delay between button reads in µs
#define MICROS_LATCH 12 // 12µs according to specs (8 seems to work fine)
#define MICROS_CLOCK 6 // 6µs according to specs (4 seems to work fine)
#define MICROS_PAUSE 6 // 6µs according to specs (4 seems to work fine)
2020-02-14 08:06:29 -05:00
#define UP 0x01
#define DOWN 0x02
#define LEFT 0x04
#define RIGHT 0x08
#define NTT_CONTROL_BIT 0x20000000
2020-02-14 08:06:29 -05:00
// Wire it all up according to the following table:
//
// NES SNES Arduino Pro Micro
// --------------------------------------
// VCC VCC (All gamepads)
// GND GND (All gamepads)
// OUT0 (LATCH) 2 (PD1, All gamepads)
// CUP (CLOCK) 3 (PD0, All gamepads)
// D1 (GP1: DATA) A0 (PF7, Gamepad 1)
// D1 (GP2: DATA) A1 (PF6, Gamepad 2)
// D1 (GP3: DATA) A2 (PF5, Gamepad 3, not currently used)
// D1 (GP4: DATA) A3 (PF4, Gamepad 4, not currently used)
2020-02-14 08:06:29 -05:00
// Set up USB HID gamepads
Gamepad_ Gamepad[GAMEPAD_COUNT];
// Controllers
uint32_t buttons[GAMEPAD_COUNT_MAX] = {0,0,0,0};
uint32_t buttonsPrev[GAMEPAD_COUNT_MAX] = {0,0,0,0};
2020-02-14 08:06:29 -05:00
uint8_t gpBit[GAMEPAD_COUNT_MAX] = {B10000000,B01000000,B00100000,B00010000};
uint32_t btnBits[32] = {0x10,0x40,0x400,0x800,UP,DOWN,LEFT,RIGHT,0x20,0x80,0x100,0x200, // Standard SNES controller
0x10000000,0x20000000,0x40000000,0x80000000,0x1000,0x2000,0x4000,0x8000, // NTT Data Keypad (NDK10)
0x10000,0x20000,0x40000,0x80000,0x100000,0x200000,0x400000,0x800000,
0x1000000,0x2000000,0x4000000,0x8000000};
2020-02-14 08:06:29 -05:00
uint8_t gp = 0;
uint8_t buttonCount = 32;
2020-02-14 08:06:29 -05:00
// Timing
uint32_t microsButtons = 0;
2020-02-14 08:06:29 -05:00
void setup()
{
// Setup latch and clock pins (2,3 or PD1, PD0)
DDRD |= B00000011; // output
PORTD &= ~B00000011; // low
// Setup data pins (A0-A3 or PF7-PF4)
DDRF &= ~B11110000; // inputs
PORTF |= B11110000; // enable internal pull-ups
}
void loop() { while(1)
2020-02-14 08:06:29 -05:00
{
// See if enough time has passed since last button read
if(micros() - microsButtons > BUTTON_READ_DELAY)
2020-02-14 08:06:29 -05:00
{
// Pulse latch
sendLatch();
for(uint8_t btn=0; btn<buttonCount; btn++)
{
for(gp=0; gp<GAMEPAD_COUNT; gp++)
2020-02-14 08:06:29 -05:00
(PINF & gpBit[gp]) ? buttons[gp] &= ~btnBits[btn] : buttons[gp] |= btnBits[btn];
sendClock();
}
// Check gamepad type
for(gp=0; gp<GAMEPAD_COUNT; gp++)
{
if((buttons[gp] & 0xF3A0) == 0xF3A0) { // NES
bitWrite(buttons[gp], 5, bitRead(buttons[gp], 4));
bitWrite(buttons[gp], 4, bitRead(buttons[gp], 6));
buttons[gp] &= 0xC3F;
}
else if(buttons[gp] & NTT_CONTROL_BIT) // SNES NTT Data Keypad
buttons[gp] &= 0x3FFFFFF;
else // SNES Gamepad
buttons[gp] &= 0xFFF;
}
for(gp=0; gp<GAMEPAD_COUNT; gp++)
2020-02-14 08:06:29 -05:00
{
// Has any buttons changed state?
if (buttons[gp] != buttonsPrev[gp])
{
Gamepad[gp]._GamepadReport.buttons = (buttons[gp] >> 4); // First 4 bits are the axes
Gamepad[gp]._GamepadReport.Y = ((buttons[gp] & DOWN) >> 1) - (buttons[gp] & UP);
Gamepad[gp]._GamepadReport.X = ((buttons[gp] & RIGHT) >> 3) - ((buttons[gp] & LEFT) >> 2);
buttonsPrev[gp] = buttons[gp];
Gamepad[gp].send();
}
2020-02-14 08:06:29 -05:00
}
microsButtons = micros();
2020-02-14 08:06:29 -05:00
}
}}
2020-02-14 08:06:29 -05:00
void sendLatch()
{
// Send a latch pulse to (S)NES controller(s)
PORTD |= B00000010; // Set HIGH
delayMicroseconds(MICROS_LATCH);
2020-02-14 08:06:29 -05:00
PORTD &= ~B00000010; // Set LOW
delayMicroseconds(MICROS_PAUSE);
2020-02-14 08:06:29 -05:00
}
void sendClock()
{
// Send a clock pulse to (S)NES controller(s)
PORTD |= B10000001; // Set HIGH
delayMicroseconds(MICROS_CLOCK);
2020-02-14 08:06:29 -05:00
PORTD &= ~B10000001; // Set LOW
delayMicroseconds(MICROS_PAUSE);
2020-02-14 08:06:29 -05:00
}