You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
485 lines
15 KiB
485 lines
15 KiB
/** |
|
* Gamecube controller to Nintendo 64 adapter |
|
* by Andrew Brown |
|
* Rewritten for N64 to HID by Peter Den Hartog |
|
* http://www.instructables.com/id/Use-an-Arduino-with-an-N64-controller/?ALLSTEPS |
|
* Modified for Atmega32u4 USB-HID by Jarno Lehtinen |
|
*/ |
|
|
|
/** |
|
* To use, hook up the following to the Arduino Duemilanove: |
|
* Digital I/O 2: N64 serial line |
|
* All appropriate grounding and power lines |
|
*/ |
|
|
|
#include "Joystick.h" |
|
|
|
//#define DEBUG |
|
|
|
//USE PIN 4 FOR DATA PIN! |
|
//USE ONLY 3.3V FOR VCC AND DATA! |
|
//TIMINGS ARE FOR 16MHz ATmega! (ATmega32u4 3.3V is 8MHz) |
|
|
|
|
|
#include "pins_arduino.h" |
|
|
|
#define N64_PIN 4 //2 |
|
#define N64_PIN_DIR DDRD |
|
// these two macros set arduino pin 2 to input or output, which with an |
|
// external 1K pull-up resistor to the 3.3V rail, is like pulling it high or |
|
// low. These operations translate to 1 op code, which takes 2 cycles |
|
#define N64_HIGH DDRD &= ~0x16 //0x04 |
|
#define N64_LOW DDRD |= 0x16 //0x04 |
|
#define N64_QUERY (PIND & 0x16)//0x04) |
|
|
|
// 8 bytes of data that we get from the controller |
|
struct { |
|
// bits: 0, 0, 0, start, y, x, b, a |
|
unsigned char data1; |
|
// bits: 1, L, R, Z, Dup, Ddown, Dright, Dleft |
|
unsigned char data2; |
|
char stick_x; |
|
char stick_y; |
|
} N64_status; |
|
char N64_raw_dump[33]; // 1 received bit per byte |
|
|
|
|
|
void N64_send(unsigned char *buffer, char length); |
|
void N64_get(); |
|
void print_N64_status(); |
|
void translate_raw_data(); |
|
|
|
|
|
/** |
|
* This CRC table for repeating bytes is take from |
|
* the cube64 project |
|
* http://cia.vc/stats/project/navi-misc/cube64 |
|
*/ |
|
unsigned char crc_repeating_table[] = { |
|
0xFF, 0x14, 0xAC, 0x47, 0x59, 0xB2, 0x0A, 0xE1, 0x36, |
|
0xDD, 0x65, 0x8E, 0x90, 0x7B, 0xC3, 0x28, 0xE8, 0x03, |
|
0xBB, 0x50, 0x4E, 0xA5, 0x1D, 0xF6, 0x21, 0xCA, 0x72, |
|
0x99, 0x87, 0x6C, 0xD4, 0x3F, 0xD1, 0x3A, 0x82, 0x69, |
|
0x77, 0x9C, 0x24, 0xCF, 0x18, 0xF3, 0x4B, 0xA0, 0xBE, |
|
0x55, 0xED, 0x06, 0xC6, 0x2D, 0x95, 0x7E, 0x60, 0x8B, |
|
0x33, 0xD8, 0x0F, 0xE4, 0x5C, 0xB7, 0xA9, 0x42, 0xFA, |
|
0x11, 0xA3, 0x48, 0xF0, 0x1B, 0x05, 0xEE, 0x56, 0xBD, |
|
0x6A, 0x81, 0x39, 0xD2, 0xCC, 0x27, 0x9F, 0x74, 0xB4, |
|
0x5F, 0xE7, 0x0C, 0x12, 0xF9, 0x41, 0xAA, 0x7D, 0x96, |
|
0x2E, 0xC5, 0xDB, 0x30, 0x88, 0x63, 0x8D, 0x66, 0xDE, |
|
0x35, 0x2B, 0xC0, 0x78, 0x93, 0x44, 0xAF, 0x17, 0xFC, |
|
0xE2, 0x09, 0xB1, 0x5A, 0x9A, 0x71, 0xC9, 0x22, 0x3C, |
|
0xD7, 0x6F, 0x84, 0x53, 0xB8, 0x00, 0xEB, 0xF5, 0x1E, |
|
0xA6, 0x4D, 0x47, 0xAC, 0x14, 0xFF, 0xE1, 0x0A, 0xB2, |
|
0x59, 0x8E, 0x65, 0xDD, 0x36, 0x28, 0xC3, 0x7B, 0x90, |
|
0x50, 0xBB, 0x03, 0xE8, 0xF6, 0x1D, 0xA5, 0x4E, 0x99, |
|
0x72, 0xCA, 0x21, 0x3F, 0xD4, 0x6C, 0x87, 0x69, 0x82, |
|
0x3A, 0xD1, 0xCF, 0x24, 0x9C, 0x77, 0xA0, 0x4B, 0xF3, |
|
0x18, 0x06, 0xED, 0x55, 0xBE, 0x7E, 0x95, 0x2D, 0xC6, |
|
0xD8, 0x33, 0x8B, 0x60, 0xB7, 0x5C, 0xE4, 0x0F, 0x11, |
|
0xFA, 0x42, 0xA9, 0x1B, 0xF0, 0x48, 0xA3, 0xBD, 0x56, |
|
0xEE, 0x05, 0xD2, 0x39, 0x81, 0x6A, 0x74, 0x9F, 0x27, |
|
0xCC, 0x0C, 0xE7, 0x5F, 0xB4, 0xAA, 0x41, 0xF9, 0x12, |
|
0xC5, 0x2E, 0x96, 0x7D, 0x63, 0x88, 0x30, 0xDB, 0x35, |
|
0xDE, 0x66, 0x8D, 0x93, 0x78, 0xC0, 0x2B, 0xFC, 0x17, |
|
0xAF, 0x44, 0x5A, 0xB1, 0x09, 0xE2, 0x22, 0xC9, 0x71, |
|
0x9A, 0x84, 0x6F, 0xD7, 0x3C, 0xEB, 0x00, 0xB8, 0x53, |
|
0x4D, 0xA6, 0x1E, 0xF5 //0xFF |
|
}; |
|
|
|
void setupJoysticks() { |
|
|
|
// Communication with gamecube controller on this pin |
|
// Don't remove these lines, we don't want to push +5V to the controller |
|
digitalWrite(N64_PIN, LOW); |
|
pinMode(N64_PIN, INPUT); |
|
|
|
|
|
// Initialize the gamecube controller by sending it a null byte. |
|
// This is unnecessary for a standard controller, but is required for the |
|
// Wavebird. |
|
unsigned char initialize = 0x00; |
|
noInterrupts(); |
|
N64_send(&initialize, 1); |
|
|
|
// Stupid routine to wait for the gamecube controller to stop |
|
// sending its response. We don't care what it is, but we |
|
// can't start asking for status if it's still responding |
|
int x; |
|
for (x=0; x<64; x++) { |
|
// make sure the line is idle for 64 iterations, should |
|
// be plenty. |
|
if (!N64_QUERY) |
|
x = 0; |
|
} |
|
|
|
// Query for the gamecube controller's status. We do this |
|
// to get the 0 point for the control stick. |
|
unsigned char command[] = {0x01}; |
|
N64_send(command, 1); |
|
// read in data and dump it to N64_raw_dump |
|
N64_get(); |
|
interrupts(); |
|
translate_raw_data(); |
|
} |
|
|
|
|
|
void translate_raw_data() |
|
{ |
|
// The get_N64_status function sloppily dumps its data 1 bit per byte |
|
// into the get_status_extended char array. It's our job to go through |
|
// that and put each piece neatly into the struct N64_status |
|
int i; |
|
memset(&N64_status, 0, sizeof(N64_status)); |
|
// line 1 |
|
// bits: A, B, Z, Start, Dup, Ddown, Dleft, Dright |
|
for (i=0; i<8; i++) { |
|
N64_status.data1 |= N64_raw_dump[i] ? (0x80 >> i) : 0; |
|
} |
|
// line 2 |
|
// bits: 0, 0, L, R, Cup, Cdown, Cleft, Cright |
|
for (i=0; i<8; i++) { |
|
N64_status.data2 |= N64_raw_dump[8+i] ? (0x80 >> i) : 0; |
|
} |
|
// line 3 |
|
// bits: joystick x value |
|
// These are 8 bit values centered at 0x80 (128) |
|
for (i=0; i<8; i++) { |
|
N64_status.stick_x |= N64_raw_dump[16+i] ? (0x80 >> i) : 0; |
|
} |
|
for (i=0; i<8; i++) { |
|
N64_status.stick_y |= N64_raw_dump[24+i] ? (0x80 >> i) : 0; |
|
} |
|
} |
|
|
|
|
|
/** |
|
* This sends the given byte sequence to the controller |
|
* length must be at least 1 |
|
* Oh, it destroys the buffer passed in as it writes it |
|
*/ |
|
void N64_send(unsigned char *buffer, char length) |
|
{ |
|
// Send these bytes |
|
char bits; |
|
|
|
bool bit; |
|
|
|
// This routine is very carefully timed by examining the assembly output. |
|
// Do not change any statements, it could throw the timings off |
|
// |
|
// We get 16 cycles per microsecond, which should be plenty, but we need to |
|
// be conservative. Most assembly ops take 1 cycle, but a few take 2 |
|
// |
|
// I use manually constructed for-loops out of gotos so I have more control |
|
// over the outputted assembly. I can insert nops where it was impossible |
|
// with a for loop |
|
|
|
asm volatile (";Starting outer for loop"); |
|
outer_loop: |
|
{ |
|
asm volatile (";Starting inner for loop"); |
|
bits=8; |
|
inner_loop: |
|
{ |
|
// Starting a bit, set the line low |
|
asm volatile (";Setting line to low"); |
|
N64_LOW; // 1 op, 2 cycles |
|
|
|
asm volatile (";branching"); |
|
if (*buffer >> 7) { |
|
asm volatile (";Bit is a 1"); |
|
// 1 bit |
|
// remain low for 1us, then go high for 3us |
|
// nop block 1 |
|
asm volatile ("nop\nnop\nnop\nnop\nnop\n"); |
|
|
|
asm volatile (";Setting line to high"); |
|
N64_HIGH; |
|
|
|
// nop block 2 |
|
// we'll wait only 2us to sync up with both conditions |
|
// at the bottom of the if statement |
|
asm volatile ("nop\nnop\nnop\nnop\nnop\n" |
|
"nop\nnop\nnop\nnop\nnop\n" |
|
"nop\nnop\nnop\nnop\nnop\n" |
|
"nop\nnop\nnop\nnop\nnop\n" |
|
"nop\nnop\nnop\nnop\nnop\n" |
|
"nop\nnop\nnop\nnop\nnop\n" |
|
); |
|
|
|
} else { |
|
asm volatile (";Bit is a 0"); |
|
// 0 bit |
|
// remain low for 3us, then go high for 1us |
|
// nop block 3 |
|
asm volatile ("nop\nnop\nnop\nnop\nnop\n" |
|
"nop\nnop\nnop\nnop\nnop\n" |
|
"nop\nnop\nnop\nnop\nnop\n" |
|
"nop\nnop\nnop\nnop\nnop\n" |
|
"nop\nnop\nnop\nnop\nnop\n" |
|
"nop\nnop\nnop\nnop\nnop\n" |
|
"nop\nnop\nnop\nnop\nnop\n" |
|
"nop\n"); |
|
|
|
asm volatile (";Setting line to high"); |
|
N64_HIGH; |
|
|
|
// wait for 1us |
|
asm volatile ("; end of conditional branch, need to wait 1us more before next bit"); |
|
|
|
} |
|
// end of the if, the line is high and needs to remain |
|
// high for exactly 16 more cycles, regardless of the previous |
|
// branch path |
|
|
|
asm volatile (";finishing inner loop body"); |
|
--bits; |
|
if (bits != 0) { |
|
// nop block 4 |
|
// this block is why a for loop was impossible |
|
asm volatile ("nop\nnop\nnop\nnop\nnop\n" |
|
"nop\nnop\nnop\nnop\n"); |
|
// rotate bits |
|
asm volatile (";rotating out bits"); |
|
*buffer <<= 1; |
|
|
|
goto inner_loop; |
|
} // fall out of inner loop |
|
} |
|
asm volatile (";continuing outer loop"); |
|
// In this case: the inner loop exits and the outer loop iterates, |
|
// there are /exactly/ 16 cycles taken up by the necessary operations. |
|
// So no nops are needed here (that was lucky!) |
|
--length; |
|
if (length != 0) { |
|
++buffer; |
|
goto outer_loop; |
|
} // fall out of outer loop |
|
} |
|
|
|
// send a single stop (1) bit |
|
// nop block 5 |
|
asm volatile ("nop\nnop\nnop\nnop\n"); |
|
N64_LOW; |
|
// wait 1 us, 16 cycles, then raise the line |
|
// 16-2=14 |
|
// nop block 6 |
|
asm volatile ("nop\nnop\nnop\nnop\nnop\n" |
|
"nop\nnop\nnop\nnop\nnop\n" |
|
"nop\nnop\nnop\nnop\n"); |
|
N64_HIGH; |
|
|
|
} |
|
|
|
void N64_get() |
|
{ |
|
// listen for the expected 8 bytes of data back from the controller and |
|
// blast it out to the N64_raw_dump array, one bit per byte for extra speed. |
|
// Afterwards, call translate_raw_data() to interpret the raw data and pack |
|
// it into the N64_status struct. |
|
asm volatile (";Starting to listen"); |
|
unsigned char timeout; |
|
char bitcount = 32; |
|
char *bitbin = N64_raw_dump; |
|
|
|
// Again, using gotos here to make the assembly more predictable and |
|
// optimization easier (please don't kill me) |
|
read_loop: |
|
timeout = 0x3f; |
|
// wait for line to go low |
|
while (N64_QUERY) { |
|
if (!--timeout) |
|
return; |
|
} |
|
// wait approx 2us and poll the line |
|
asm volatile ( |
|
"nop\nnop\nnop\nnop\nnop\n" |
|
"nop\nnop\nnop\nnop\nnop\n" |
|
"nop\nnop\nnop\nnop\nnop\n" |
|
"nop\nnop\nnop\nnop\nnop\n" |
|
"nop\nnop\nnop\nnop\nnop\n" |
|
"nop\nnop\nnop\nnop\nnop\n" |
|
); |
|
*bitbin = N64_QUERY; |
|
++bitbin; |
|
--bitcount; |
|
if (bitcount == 0) |
|
return; |
|
|
|
// wait for line to go high again |
|
// it may already be high, so this should just drop through |
|
timeout = 0x3f; |
|
while (!N64_QUERY) { |
|
if (!--timeout) |
|
return; |
|
} |
|
goto read_loop; |
|
|
|
} |
|
|
|
void debug() |
|
{ |
|
int i; |
|
// bits: A, B, Z, Start, Dup, Ddown, Dleft, Dright |
|
// bits: 0, 0, L, R, Cup, Cdown, Cleft, Cright |
|
Serial.println(); |
|
Serial.print("Start: "); |
|
Serial.println(N64_status.data1 & 16 ? 1:0); |
|
|
|
Serial.print("Z: "); |
|
Serial.println(N64_status.data1 & 32 ? 1:0); |
|
|
|
Serial.print("B: "); |
|
Serial.println(N64_status.data1 & 64 ? 1:0); |
|
|
|
Serial.print("A: "); |
|
Serial.println(N64_status.data1 & 128 ? 1:0); |
|
|
|
Serial.print("L: "); |
|
Serial.println(N64_status.data2 & 32 ? 1:0); |
|
Serial.print("R: "); |
|
Serial.println(N64_status.data2 & 16 ? 1:0); |
|
|
|
Serial.print("Cup: "); |
|
Serial.println(N64_status.data2 & 0x08 ? 1:0); |
|
Serial.print("Cdown: "); |
|
Serial.println(N64_status.data2 & 0x04 ? 1:0); |
|
Serial.print("Cright:"); |
|
Serial.println(N64_status.data2 & 0x01 ? 1:0); |
|
Serial.print("Cleft: "); |
|
Serial.println(N64_status.data2 & 0x02 ? 1:0); |
|
|
|
Serial.print("Dup: "); |
|
Serial.println(N64_status.data1 & 0x08 ? 1:0); |
|
Serial.print("Ddown: "); |
|
Serial.println(N64_status.data1 & 0x04 ? 1:0); |
|
Serial.print("Dright:"); |
|
Serial.println(N64_status.data1 & 0x01 ? 1:0); |
|
Serial.print("Dleft: "); |
|
Serial.println(N64_status.data1 & 0x02 ? 1:0); |
|
|
|
Serial.print("Stick X:"); |
|
Serial.println(N64_status.stick_x, DEC); |
|
Serial.print("Stick Y:"); |
|
Serial.println(N64_status.stick_y, DEC); |
|
} |
|
|
|
|
|
void readJoysticks() { |
|
int i; |
|
unsigned char data, addr; |
|
|
|
// Command to send to the gamecube |
|
// The last bit is rumble, flip it to rumble |
|
// yes this does need to be inside the loop, the |
|
// array gets mutilated when it goes through N64_send |
|
unsigned char command[] = {0x01}; |
|
|
|
// don't want interrupts getting in the way |
|
noInterrupts(); |
|
// send those 3 bytes |
|
N64_send(command, 1); |
|
// read in data and dump it to N64_raw_dump |
|
N64_get(); |
|
// end of time sensitive code |
|
interrupts(); |
|
|
|
// translate the data in N64_raw_dump to something useful |
|
translate_raw_data(); |
|
} |
|
|
|
|
|
|
|
|
|
void interpretJoystickState() { |
|
Joystick.setXAxis(N64_status.stick_x); |
|
Joystick.setYAxis(-N64_status.stick_y); |
|
|
|
Joystick.setButton(0, (N64_status.data1 & 16) ); //BUTTON1 (Start) |
|
Joystick.setButton(1, (N64_status.data1 & 32) ); //BUTTON2 (Select) (Z) |
|
Joystick.setButton(2, (N64_status.data1 & 128) ); //BUTTON3 (A) |
|
Joystick.setButton(3, (N64_status.data1 & 64) ); //BUTTON4 (B) |
|
Joystick.setButton(4, (N64_status.data2 & 0x04) ); //BUTTON5 (X) (Cdown) |
|
Joystick.setButton(5, (N64_status.data2 & 0x02) ); //BUTTON6 (Y) (Cleft) |
|
Joystick.setButton(6, (N64_status.data2 & 32) ); //BUTTON7 (LB) (L) |
|
Joystick.setButton(7, (N64_status.data2 & 16) ); //BUTTON8 (RB) (R) |
|
Joystick.setButton(8, (N64_status.data2 & 0x08) ); //BUTTON9 (LT) (Cup) |
|
Joystick.setButton(9, (N64_status.data2 & 0x01) ); //BUTTON10 (RT) (Cright) |
|
|
|
/*Joystick.setXAxisRotation(180); |
|
Joystick.setYAxisRotation(180); |
|
Joystick.setHatSwitch(0,-1); |
|
Joystick.setButton(10, 0); |
|
Joystick.setButton(11, 0);*/ |
|
|
|
Joystick.setHatSwitch(0,-1); |
|
if ( (N64_status.data1 & 0x08) ) Joystick.setHatSwitch(0,0); //UP |
|
if ( (N64_status.data1 & 0x04) ) Joystick.setHatSwitch(0,180); //DOWN |
|
if ( (N64_status.data1 & 0x02) ) Joystick.setHatSwitch(0,270); //LEFT |
|
if ( (N64_status.data1 & 0x01) ) Joystick.setHatSwitch(0,90); //RIGHT |
|
|
|
if ( (N64_status.data1 & 0x08) && (N64_status.data1 & 0x01) ) Joystick.setHatSwitch(0,45); //UP-RIGHT |
|
if ( (N64_status.data1 & 0x01) && (N64_status.data1 & 0x04) ) Joystick.setHatSwitch(0,135); //RIGHT-DOWN |
|
if ( (N64_status.data1 & 0x04) && (N64_status.data1 & 0x02) ) Joystick.setHatSwitch(0,225); //DOWN-LEFT |
|
if ( (N64_status.data1 & 0x02) && (N64_status.data1 & 0x08) ) Joystick.setHatSwitch(0,315); //LEFT-UP |
|
|
|
} |
|
|
|
|
|
void setup() |
|
{ |
|
#ifdef DEBUG |
|
Serial.begin(9600); |
|
#endif |
|
|
|
setupJoysticks(); |
|
|
|
Joystick.begin(false); |
|
|
|
} |
|
|
|
|
|
uint8_t oldData1 = 0xff; |
|
uint8_t oldData2 = 0xff; |
|
int8_t oldStick_x = 0; |
|
int8_t oldStick_y = 0; |
|
|
|
uint8_t flag = 0; |
|
|
|
void loop() { |
|
|
|
readJoysticks(); |
|
|
|
if (N64_status.data1 != oldData1) { |
|
oldData1 = N64_status.data1; |
|
flag = 1; |
|
} |
|
if (N64_status.data2 != oldData2) { |
|
oldData2 = N64_status.data2; |
|
flag = 1; |
|
} |
|
if (N64_status.stick_x != oldStick_x) { |
|
oldStick_x = N64_status.stick_x; |
|
flag = 1; |
|
} |
|
if (N64_status.stick_y != oldStick_y) { |
|
oldStick_y = N64_status.stick_y; |
|
flag = 1; |
|
} |
|
|
|
if (flag) { |
|
interpretJoystickState(); |
|
Joystick.sendState(); |
|
flag = 0; |
|
} |
|
|
|
|
|
delayMicroseconds(1000); |
|
#ifdef DEBUG |
|
debug(); |
|
delay(200); |
|
#endif |
|
} |
|
|
|
|
|
|