/* Name: usbdrvasm12.S * Project: AVR USB driver * Author: Christian Starkjohann * Creation Date: 2004-12-29 * Tabsize: 4 * Copyright: (c) 2007 by OBJECTIVE DEVELOPMENT Software GmbH * License: GNU GPL v2 (see License.txt) or proprietary (CommercialLicense.txt) * This Revision: $Id: usbdrvasm12.S,v 1.1 2013-04-25 02:18:15 cvs Exp $ */ /* Do not link this file! Link usbdrvasm.S instead, which includes the * appropriate implementation! */ /* General Description: This file is the 12 MHz version of the asssembler part of the USB driver. It requires a 12 MHz crystal (not a ceramic resonator and not a calibrated RC oscillator). See usbdrv.h for a description of the entire driver. Since almost all of this code is timing critical, don't change unless you really know what you are doing! Many parts require not only a maximum number of CPU cycles, but even an exact number of cycles! Timing constraints according to spec (in bit times): timing subject min max CPUcycles --------------------------------------------------------------------------- EOP of OUT/SETUP to sync pattern of DATA0 (both rx) 2 16 16-128 EOP of IN to sync pattern of DATA0 (rx, then tx) 2 7.5 16-60 DATAx (rx) to ACK/NAK/STALL (tx) 2 7.5 16-60 */ ;Software-receiver engine. Strict timing! Don't change unless you can preserve timing! ;interrupt response time: 4 cycles + insn running = 7 max if interrupts always enabled ;max allowable interrupt latency: 34 cycles -> max 25 cycles interrupt disable ;max stack usage: [ret(2), YL, SREG, YH, shift, x1, x2, x3, cnt, x4] = 11 bytes ;Numbers in brackets are maximum cycles since SOF. USB_INTR_VECTOR: ;order of registers pushed: YL, SREG [sofError], YH, shift, x1, x2, x3, cnt push YL ;2 [35] push only what is necessary to sync with edge ASAP in YL, SREG ;1 [37] push YL ;2 [39] ;---------------------------------------------------------------------------- ; Synchronize with sync pattern: ;---------------------------------------------------------------------------- ;sync byte (D-) pattern LSb to MSb: 01010100 [1 = idle = J, 0 = K] ;sync up with J to K edge during sync pattern -- use fastest possible loops ;first part has no timeout because it waits for IDLE or SE1 (== disconnected) waitForJ: sbis USBIN, USBMINUS ;1 [40] wait for D- == 1 rjmp waitForJ ;2 waitForK: ;The following code results in a sampling window of 1/4 bit which meets the spec. sbis USBIN, USBMINUS rjmp foundK sbis USBIN, USBMINUS rjmp foundK sbis USBIN, USBMINUS rjmp foundK sbis USBIN, USBMINUS rjmp foundK sbis USBIN, USBMINUS rjmp foundK #if USB_COUNT_SOF lds YL, usbSofCount inc YL sts usbSofCount, YL #endif /* USB_COUNT_SOF */ rjmp sofError foundK: ;{3, 5} after falling D- edge, average delay: 4 cycles [we want 4 for center sampling] ;we have 1 bit time for setup purposes, then sample again. Numbers in brackets ;are cycles from center of first sync (double K) bit after the instruction push YH ;2 [2] lds YL, usbInputBufOffset;2 [4] clr YH ;1 [5] subi YL, lo8(-(usbRxBuf));1 [6] sbci YH, hi8(-(usbRxBuf));1 [7] sbis USBIN, USBMINUS ;1 [8] we want two bits K [sample 1 cycle too early] rjmp haveTwoBitsK ;2 [10] pop YH ;2 [11] undo the push from before rjmp waitForK ;2 [13] this was not the end of sync, retry haveTwoBitsK: ;---------------------------------------------------------------------------- ; push more registers and initialize values while we sample the first bits: ;---------------------------------------------------------------------------- push shift ;2 [16] push x1 ;2 [12] push x2 ;2 [14] in x1, USBIN ;1 [17] <-- sample bit 0 ldi shift, 0xff ;1 [18] bst x1, USBMINUS ;1 [19] bld shift, 0 ;1 [20] push x3 ;2 [22] push cnt ;2 [24] in x2, USBIN ;1 [25] <-- sample bit 1 ser x3 ;1 [26] [inserted init instruction] eor x1, x2 ;1 [27] bst x1, USBMINUS ;1 [28] bld shift, 1 ;1 [29] ldi cnt, USB_BUFSIZE;1 [30] [inserted init instruction] rjmp rxbit2 ;2 [32] ;---------------------------------------------------------------------------- ; Receiver loop (numbers in brackets are cycles within byte after instr) ;---------------------------------------------------------------------------- unstuff0: ;1 (branch taken) andi x3, ~0x01 ;1 [15] mov x1, x2 ;1 [16] x2 contains last sampled (stuffed) bit in x2, USBIN ;1 [17] <-- sample bit 1 again ori shift, 0x01 ;1 [18] rjmp didUnstuff0 ;2 [20] unstuff1: ;1 (branch taken) mov x2, x1 ;1 [21] x1 contains last sampled (stuffed) bit andi x3, ~0x02 ;1 [22] ori shift, 0x02 ;1 [23] nop ;1 [24] in x1, USBIN ;1 [25] <-- sample bit 2 again rjmp didUnstuff1 ;2 [27] unstuff2: ;1 (branch taken) andi x3, ~0x04 ;1 [29] ori shift, 0x04 ;1 [30] mov x1, x2 ;1 [31] x2 contains last sampled (stuffed) bit nop ;1 [32] in x2, USBIN ;1 [33] <-- sample bit 3 rjmp didUnstuff2 ;2 [35] unstuff3: ;1 (branch taken) in x2, USBIN ;1 [34] <-- sample stuffed bit 3 [one cycle too late] andi x3, ~0x08 ;1 [35] ori shift, 0x08 ;1 [36] rjmp didUnstuff3 ;2 [38] unstuff4: ;1 (branch taken) andi x3, ~0x10 ;1 [40] in x1, USBIN ;1 [41] <-- sample stuffed bit 4 ori shift, 0x10 ;1 [42] rjmp didUnstuff4 ;2 [44] unstuff5: ;1 (branch taken) andi x3, ~0x20 ;1 [48] in x2, USBIN ;1 [49] <-- sample stuffed bit 5 ori shift, 0x20 ;1 [50] rjmp didUnstuff5 ;2 [52] unstuff6: ;1 (branch taken) andi x3, ~0x40 ;1 [56] in x1, USBIN ;1 [57] <-- sample stuffed bit 6 ori shift, 0x40 ;1 [58] rjmp didUnstuff6 ;2 [60] ; extra jobs done during bit interval: ; bit 0: store, clear [SE0 is unreliable here due to bit dribbling in hubs] ; bit 1: se0 check ; bit 2: overflow check ; bit 3: recovery from delay [bit 0 tasks took too long] ; bit 4: none ; bit 5: none ; bit 6: none ; bit 7: jump, eor rxLoop: eor x3, shift ;1 [0] reconstruct: x3 is 0 at bit locations we changed, 1 at others in x1, USBIN ;1 [1] <-- sample bit 0 st y+, x3 ;2 [3] store data ser x3 ;1 [4] nop ;1 [5] eor x2, x1 ;1 [6] bst x2, USBMINUS;1 [7] bld shift, 0 ;1 [8] in x2, USBIN ;1 [9] <-- sample bit 1 (or possibly bit 0 stuffed) andi x2, USBMASK ;1 [10] breq se0 ;1 [11] SE0 check for bit 1 andi shift, 0xf9 ;1 [12] didUnstuff0: breq unstuff0 ;1 [13] eor x1, x2 ;1 [14] bst x1, USBMINUS;1 [15] bld shift, 1 ;1 [16] rxbit2: in x1, USBIN ;1 [17] <-- sample bit 2 (or possibly bit 1 stuffed) andi shift, 0xf3 ;1 [18] breq unstuff1 ;1 [19] do remaining work for bit 1 didUnstuff1: subi cnt, 1 ;1 [20] brcs overflow ;1 [21] loop control eor x2, x1 ;1 [22] bst x2, USBMINUS;1 [23] bld shift, 2 ;1 [24] in x2, USBIN ;1 [25] <-- sample bit 3 (or possibly bit 2 stuffed) andi shift, 0xe7 ;1 [26] breq unstuff2 ;1 [27] didUnstuff2: eor x1, x2 ;1 [28] bst x1, USBMINUS;1 [29] bld shift, 3 ;1 [30] didUnstuff3: andi shift, 0xcf ;1 [31] breq unstuff3 ;1 [32] in x1, USBIN ;1 [33] <-- sample bit 4 eor x2, x1 ;1 [34] bst x2, USBMINUS;1 [35] bld shift, 4 ;1 [36] didUnstuff4: andi shift, 0x9f ;1 [37] breq unstuff4 ;1 [38] nop2 ;2 [40] in x2, USBIN ;1 [41] <-- sample bit 5 eor x1, x2 ;1 [42] bst x1, USBMINUS;1 [43] bld shift, 5 ;1 [44] didUnstuff5: andi shift, 0x3f ;1 [45] breq unstuff5 ;1 [46] nop2 ;2 [48] in x1, USBIN ;1 [49] <-- sample bit 6 eor x2, x1 ;1 [50] bst x2, USBMINUS;1 [51] bld shift, 6 ;1 [52] didUnstuff6: cpi shift, 0x02 ;1 [53] brlo unstuff6 ;1 [54] nop2 ;2 [56] in x2, USBIN ;1 [57] <-- sample bit 7 eor x1, x2 ;1 [58] bst x1, USBMINUS;1 [59] bld shift, 7 ;1 [60] didUnstuff7: cpi shift, 0x04 ;1 [61] brsh rxLoop ;2 [63] loop control unstuff7: andi x3, ~0x80 ;1 [63] ori shift, 0x80 ;1 [64] in x2, USBIN ;1 [65] <-- sample stuffed bit 7 nop ;1 [66] rjmp didUnstuff7 ;2 [68] ;---------------------------------------------------------------------------- ; Processing of received packet (numbers in brackets are cycles after end of SE0) ;---------------------------------------------------------------------------- ;This is the only non-error exit point for the software receiver loop ;we don't check any CRCs here because there is no time left. #define token x1 se0: ; [0] subi cnt, USB_BUFSIZE ;1 [1] neg cnt ;1 [2] cpi cnt, 3 ;1 [3] ldi x2, 1<